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Introduction

A group T’ with a given system of generators {7;},¢; carries a unique mazimal
left invariant distance function for which

dist(y;, id) = dist(y},id) = 1, iel.

This distance function, called the word metric associated to the generating
set {v:} C T, makes I a subject to a geometric scrutiny as any other metric
space.

This space may appear boring and uneventful to a geometer’s eye since it is
discrete and the traditional local (e.g. topological and infinitesimal) machin-
ery does not run in I'. To regain the geometric perspective one has to change
one’s position and move the observation point far away from I'. Then the
metric in I' seen from the distance d becomes the original distance divided by
d and for d — oo the points in I coalesce into a connected continuous solid
unity which occupies the visual horizon without any gaps or holes and fills
our geometer’s heart with joy. For example, an Abelian group I' with a finite
generating set {7;} and the corresponding family of metric, dist(,) /d, d > 0,
turns in the limit for d — oo into a real linear space L of dimension n = rank I’
with a Minkowski metric (also called a Banach norm) whose unit ball around
the origin is a convex centrally symmetric polyhedron in L.

Instead of passing to the limit of metric spaces,
dlim (T, dist /d),

(technically speaking, one appeals here to the topology in the set of “all”
metric spaces coming along with the Hausdorff metric; if the ordinary limit
does not exist, one resorts to ultralimits, see 2.A), one may remain in the
original metric space (T, dist(.,;}) and concentrate on the asymptotic proper-
ties of I" which are expressed in terms of distances between variable points in
I as these distances — oo.

0.1. Example: the growth function. Let I" be a discrete metric space
and consider the concentric balls of radii d around a chosen point 45 € T,

B(d) = {y €T | dist(y,%) < d}.
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To make the discussion meaningful, we assume that the balls B(d) are finite
(subsets) for all d (which is obviously the case for the word metrics of finitely
generated groups) and then we have the growth function of T that is

N(d) = card B(d).

For small values of d the function N(d) strongly depends on 7, and it is
oversensitive to perturbations of the metric in I'. On the other hand, the
behaviour of N(d) for large d — oo is essentially independent of 7o (under
mild assumptions on I' which are satisfied in all examples we are concerned
with in this article) and this behaviour is also rather stable under reasonable
changes of the metric.

0.1.A. Subexample: growth of an Abelian group. Let I’ be an Abelian
group with the word metric corresponding to a finite generating set. Then
(this is almost obvious) N(d) has polynomial growth of degree n = rankT,
ie.

Ad® < N(d) < A d™ +1, (*)
where A, and A; are some positive constants depending on the chosen system
of generators. It is also not hard to show that there exists a limit

A= d}im d" N(d), (#+)

which is an improvement over the above inequality (*) for large d. (In fact,
the convergence in (#+) is quite fast, A —d™" N(d) = O(d""!), and it is
known to some people in certain quarters when N(d) is actually an honest
polynomial in d, compare [Ehr], [Bens], [McM], [Ka-Kho].

0.2. Large-scale equivalence relations between metric spaces. Our
“asymptotic” attitude obliges every such equivalence relation to be strong
enough to make every bounded space X equivalent to a single point (or, at
least to an arbitrarily small space). Recall that a metric space X is called
bounded if

Diam X = sup dist(z,,z3) < 00.
def z;,r,

Here is the weakest relation of this sort used in geometry:

0.2.A. Hausdorff equivalence between metric spaces. Write

X ~ Y,

Hau

where X and Y are metric spaces, if there exists a metric on the disjoint
union Z of X and Y, such that distz on X equals the original metric distx
on X and similarly distz |Y = disty, such that the distance functions

6(z) = distz(z,Y) = inf distz(z,y)
¥
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and
6(y) = distz(y, X)

are bounded, i.e.

sup 4(z) < oo and sup §(y) < oo.
zeX y€Y

Recall that the maximum of the above two suprema is called the Hausdorff
distance (between subsets X and Y in Z) and the infimum of these distances
over all metrics on Z which restrict to disty on X C Z and disty on Y C Z
is called the (abstract) Hausdorff distance between metric spaces X and Y.
Thus the relation X ol Y expresses the finiteness of disty., (X,Y). (Our
discussion on the limit of spaces at the beginning of this introduction refers to
the convergence of unbounded spaces, X; = X, i =1, 2, ..., with respect to
the Hausdorff distance between appropriately chosen bounded subsets B; C X;
and B! C X. Then the Hausdorff convergence X; — X, does not preclude
the infinite Hausdorff distance between X and every X;, i =1, 2,...,. This
is similar to the uniform convergence of functions on bounded or compact
subsets of a fixed infinite space, such as R", for instance.)

0.2.A,. Ezample. Let I be a free Abelian group of rank n and {y;,...,7.}
be a (free) system of generators. Then I' with the corresponding word metric

is o to the n-dimensional Euclidean space R" with the so-called ¢,-metric

n

dist(z,y) = Y =i — yil.

=1

In fact, the homomorphism I' =+ R™ extending
7~ (1,0,...,0), v — (0,1,0,...,0), ...,

is an isometry and every point of R" lies at most distance one from the image

of T

0.2.A,. Long-range connectedness. Here is the simplest instance of
redefining a standard topological notion in the large-scale terms. A metric
space X is called long-range (or large-scale)connected if there exists a constant
d > 0 such that every two points z and y in X can be joined by a finite chain
of points

To =T, Ty, Ty ... Tn =Y,

such that
dist(z;,zio) <d, 1=1,...,n.
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It is clear, that the long range connectedness in invariant under o In fact,
X i3 L.r. connected if and only if it is o toa path connected space. (Idea
of the proof: add to X the edges betwecen all pairs of points with mutual
distances < d and extend the metric from X to the resulting space Xy D X
of paths,

Ezample. If X = (T, word metric) then X; equals the Cayley graph of I'
which, as we know, is always connected.)

0.2.A]. L.r. connectedness at co. The idea of l.r. connectedness becomes
interesting in the group theoretic context when it applies not to a group T’
directly, but to some auxiliary space or a sequence of spaces. An instance of
that is l.r. connectedness at infinity defined as follows.

A metric space X is called l.r. disconnected at infinity if for every d > 0 there
exist two subsets X; and X; in X such that

(i) dist(Xy,X3) > d which means by the definition of this dist between
subsets that

dist(z,,z3) > d forall z,€ X;, and z;€ Xj.

(i1) X1 and X; cover almost all X, i.e. the complement X — (X; U X;) is
bounded.

Then X is called L.r. connected at oo if for some d the above X,, X3 do not
exist.

Similarly, using k different X; instead of two, one defines the number of
L.r. connected components at oo which agrees with the usual notion of the
ends of groups.

A remark relevant to our discussion is the invariance of the number of ends
(i-e. L.r. components at co) under the Hausdorfl equivalence.

0.2.B. Terminology: “asymptotic”, “long-range”, “large-scale”.
These expressions are used interchangeably and the choice of a particular one
depends on what kind of associations we want to carry along with a formal
argument. Thus “asymptotic” awakens an analyst in our minds, “large scale”
shifts the discussion into a more geometric vein and “long range” appeals to
whatever is left in us of a physicist.

0.2.C. Lipschitz equivalence and quasi-isometry. Two metrics on the
same space, say dist, and dist;, are called (Lipschitz) equivalent if the ratios
dist, / dist; and dist; / dist, are bounded when they are considered as functions
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on the Cartesian square of the space minus the diagonal. Then two different
metric spaces X, and X; are called (bi-)Lipschitz equivalent if there exists a
bijection X; — X3 which brings the metric from X, to a metric on X; which
is equivalent to the original metric on X;.

Ezample. If dist, and dist; are word metrics on T corresponding to two finite

generating sets then they are (obviously) equivalent. Consequently, isomor-

phic finitely generated groups are o (this is an abbreviation of “Lipschitz
p

cquivalent”) for their respective word metrics.

Remark. One can alternatively define the Lipschitz equivalence as an iso-
morphism in the category of metric spaces and Lipschitz map where a map
f: X1 — X, is called Lipschitz if there exists a (Lipschitz) constant A > 0,
such that

dist(f(z), f(y)) < A dist (z,y) for all z,y € X;.

Notice, that every homomorphism between finitely generated groups is Lip-
schitz.

Now we use both relation o and o and generate with them what is called
au 1D

the quasi-isometry equivalence between metric spaces X and Y. In fact, X
and Y are quasi-isometric if and only if there exist X’ and Y”, such that

X ~X ~Y ~ Y.
Hau Lip Hau

0.2.C,. Basic exzample. Let X be a Riemannian manifold and let T be a
finitely generated group properly and isometrically acting on X. (An action of
a discrete group is proper if for every compact subset B C X the intersection
BN +(B) is empty for almost all, i.e. for all but finitely many v € I'.) Next, a
proper action is called cocompact if the quotient space X/T is compact. This
is equivalent (for the proper actions) to the existence of a compact subset
B ¢ X whose I'-translates cover all of X,i.e. TB = X.

The following obvious proposition-example constitutes the major link between
the asymptotic group theory and the large-scale Riemannian geometry.

If the action of T' on X is proper and cocompact then I' is quasi-isomelric to

X.

(Here and in future, I' is given the word metric associated to some finite
generating set.)

Corollary. There ezist quasi-isometric groups I'y and T; whichk are not com-
mensurable. (Recall that T’y and I'; are commensurable if there exist sub-
groups of finite index, I'} C Iy andT; C T'; such that I} is isomorphic to
r3.)
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For example, the product of two hyperbolic planes, X = H? x H?, admits an
irreducible cocompact proper action of a discrete group I', where “irreducible”
means that the induced action of T' (or rather of the subgroup IY¥ C T of
index < 2 which does not interchange the Cartesian components of H? x H?)
on each H? is non-proper. Such a I' is quasi-isometric to the product ') x T,
of two surface groups (as I'; x I'; obviously acts on H? x H?) but one can
easily show that I' is not commensurable to Iy x I';. (The only truly non-
trivial point in the above discussion is the existence of an irreducible I'. This
is constructed by arithmetic means, see [Gr-Pa] for an elementary discussion
on the matter.)

0.2.C;. Let us indicate a non-Riemannian version of the above example.
Take an arbitrary locally compact group G and consider two discrete sub-
groups I'; andT'; in G. Then, if Ty and T'; are finitely generated and cocom-
pact in G then they are guasi-isometric. Instead of giving a proof (which is
trivial anyway) we indicate a further generalization which is motivated by the
following features of our picture

(i) The left action of I'; on G commutes with the right action of I';;
(i1) both actions are cocompact on G.

Now we state the following

0.2.C;. Topological criterion for quasi-isometry. Two finitely generated
groups T'y and T'; are quasi-isometric if and only if there ezist proper actions
of T'y and T'; on some locally compact topological space X such that

(i) the actions commute;
(i1) both actions are cocompact.

Idea of the proof. We only indicate here how to produce an X starting from
a quasi-isometry between I’y and I’;. To simplify the matter we assume a
Lipschitz equivalence rather than a quasi-isometry which is given by a bi-
Lipschitz bijection f : I’y — T';. Then we consider the space F of all maps
I’ = T'; with the pointwise convergence (topologically, this is a countable
union of Cantor sets) and observe that the natural actions of ', and I'; on F
are proper and they commute. Then we take the closure X of the (I} x I';)-
orbit of our f € F and leave it to the reader to check that the actions of I
and I'; on X are co-compact.

0.2.D. Why Lipschitz? Let us try to relax further our equivalences. Say
that two metrics dist, and dist; on X are uniformly equivalent on the large-
scale (or l.s.u. equivalent) if there exists a real function A(d), d > 0, such
that

disty(z,y) < A(distz (z,y)) for all zandy in X
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and conversely,
dist, S /\(distl ).

Then one defines the Ls.u. equivalence between metric spaces X and Y by
mixing the above with the Hausdorff equivalence. This may appear signifi-
cantly more general than quasi-isometry but it is not quite so because of the
following tnivial

Lemma. If the spaces X and Y are quasi-geodesic (see the definition below)
then Ls.u. equivalence between X and Y is the same thing as quasi-isometry.

Definition. A metric space X is called quasi-geodesic if there exist positive
constants d and A, such that for every two points z and y in X there exists
a finite chain of points in X,

Zo=Z, T2y.+-y In =Y,

such that
dist(z;,z;_,) <d, 1=1,...,n, (%)

and

i dist (i, zi-1) < A dist (z,y). (%)

=1

Eramples. (a) Every group I with a word metric is (obviously) quasi-geodesic.
In fact it is almost geodesic as one can satisfy (+#) and (§) with d = 1 and
A = 1. (For truly geodesic one asks for an arbitrarily small d > 0 in (*).)

(b) Let X be a connected Riemannian manifold. Then it is quasi-geodesic
almost by definition as dist(z,y) appears as the infimum of the lengths of
paths in X between z and y. If X is complete as a metric space, then X is truly
geodesic as the above infimum is actually achieved by some curve between
randy. (Notice, that this does not exclude manifolds with boundaries which
are metrically complete but are not complete in a certain more technical
sense. )

(¢) Let Ty C I'; be a finitely generated subgroup in a finitely generated group
I'. Then the word metric dist; restricted to I'y is not, in general, quasi-
geodesic in T';. The simplest instance of that is seen in the nilpotent group
Iy = (e, ¢ | [a,8] = ¢, [a,¢] = [b,c] = 1) for T\ = Z generated by the
(central) element c. Here one immediately sees that the commutator [a®, b"]
lies in T} and is equal to c®. Thus dist, I [;_s;’ (dist,)i, and so dist, and

dist; are uniformly equivalent on '} but by no means Lipschitz equivalent.

0.3. From groups to spaces. Take a finitely generated group I' and let dist
be a word metric. Now we try to forget the structure of the group in I' and
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look on (T, dist) as on a metric space. (Forgetting the structure is not quite
complete at this stage as I' appears as a subgroup in the full isometry group
Iso (T, dist); moreover, I' = Iso(T, dist) in most cases.) Furthermore, as we
are. interested in the large-scale geometry of (I, dist) we want our analysis
of T to be stable under quasi-isometrics. In other words our (geo)metric
invariants should remain unchanged if we pass to a metric space (I”, dist’)
quasi-isometric to (T, dist). Now it is not at all easy to recognize I' by looking
at IV, yet a variety of characteristics of I' can be reconstructed in terms of I''!
These are precisely the asymptotic (or large scale) invariants we are after. In
fact, there are certain cases (e.g. I' = Z") where one can recapture the group
I itself up to commensurability.

Given a discrete metric space I, one can make it more palatable by adding
some meat to I' in the form of edges and higher dimensional simplices with
vertices in T, without changing the quasi-isometry type. For example, if I’
is finitely presented, then there is a finite 2-dimensional polyhedron P with
x1(P) = I' and the universal covering P gives us a nice tasty thickening
of T as P is connected and simply connected. There is not, in general, any
distinguished metric on P quasi-isometric to I', but there is a reasonable class
of such metrics which are invariant under the deck transformation group I'. A
geometrically oriented reader may prefer another version of this construction
where instead of P one takes a compact Riemannian manifold V' (possibly
with a boundary) having the fundamental group x;(V) =T and then passes
to the universal cover V with the induced Riemannian metric. This is a
geodesic metric space which is connected and simply connected and where I’
acts properly and cocompactly. So again V is quasi-isometric to I'. Thus the
large-scale (or asymptotic) geometry of a finitely presented group embeds into
a more general theory, that is the quasi-isometric geometry of non-compact
Riemannian manifolds with no group acting anywhere.

Here one may start to feel rather uncomfortable by realizing how much struc-
ture has been lost as one passed from T to the quasi-isometry class of (T,
word metric). Indeed one barters here a rigid crystalline beauty of a group
for a soft and flabby chunk of geometry where all measurements have built-in
errors. But something amazing and unexpected happens here as was discov-
ered by Mostow in 1968: the quasi-isometric (or large-scale) geometry turns
out by far more rich and powerful than appears at first sight. In fact, one
believes nowadays that most essential invariants of an infinite group I' are
quasi-isometry invariant. Well, even so, why should we go through all the
pains of reconstructing the group structure from geometry if nobody forces
us to leave the pure group theoretic world in the first place? Here are several
reasons to do so.

I. The group theoretic structure appears too rigid and limits one to formal
combinatorial and algebraic manipulations with no room for transcendental
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methods (i.e. the analysis of infinity). This is similar to the elementary theory
of metric spaces where the only admissible maps are isometries. It is fruitful to
include into the category more morphisms, such as Lipschitz maps, continuous
maps, measurable maps etc., thus bringing analysis into play.

II. Even in purely group theoretic questions the geometric language may
tremendously clarify the picture. For example, from a geometer's (even a
topologist’s) viewpoint the free subgroup theorem (“a subgroup of a free group
is free”) appears as a painful way of expressing (in a special case) the obvious
feature of covering maps Y oY,

dmY =1 = dm¥V=1.

(If you have ever tried and failed to drag yourself through the notational
rigours of an algebraic proof you must share my relief at the realization that
the difficulty there stemmed not from mathematics but from a non-adequate
language. I still feel thankful to Dima Kazhdan who explained the matter
to me many years ago.) Similar linguistic aberrations can be observed (at
least by a geometer) in all corners of the traditional geometric group theory,
such as the theory of free products (with and without amalgamations), small
cancellation theory etc. (The adherence to the combinatorial language comes
from an instinctive mistrust most algebraists feel toward geometry which they
regard as “non-rigorous”.)

II'' Ezample: Hyper-Euclidean groups. Here is an instance of a useful
notion which naturally pops up in the geometric setting and which would
become a major nuisance once one committed oneself to a purely algebraic

language.

Definition. A group T is called hyper-Euclidean in dimension n if it admits
a proper isometric action on a connected oriented n-dimensional Riemannian
manifold X without boundary which admits a proper Lipschitz map f: X —
R" of degree one. It is sometimes desirable to vary this definition

(a) by requesting the action to be cocompact,

(b) by allowing the action to be quasi-isometric,

(c) by admitting maps f of degree > 1,

(d) by insisting that X should be contractible.

(The hyper-Euclidean conception appears in geometry and topology in the
study of positive scalar curvature, see [Gr-Law] and the Novikov higher sig-
nature conjecture, see [Fa-Hs| and [C-G-M].)

IlI. The geometric language brings along a variety of concepts, construc-
tions and ideas unimaginable in the world of pure algebra (such as the above
“hyper-Euclidean”). Thus, geometry suggests an impressive number of po-
tentially useful asymptotic invariants of groups about which one may ask the
following standard questions,
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(A) When and how can one compute such an invariant for a given group?
(E.g. how to decide if a given group is hyper-Euclidean.)

{B) What are the relations between different invariants?

(C) Which values of an invariant can be realized by some group I'? (E.g.
when does a given function f(d) appear as the growth function of some
finitely generated group I'? Compare 0.1.)

(D) How large is the class of groups with a given value of an invariant?
(E.g. is every group (of finite cohomological dimension) hyper-Euclidean
in dimension n for a given n?)

IV. When we go from groups to spaces we mentally change the class of es-
sential examples. The most important manifolds studied by geometers are
symmetric and locally symmetric spaces (of finite and infinite dimension)
and other homogeneous spaces. Besides being remarkably attractive objects
in their own right these spaces may serve as measuring rods for the study
of more general spaces and groups. A typical instance of that is the above
definition of “hyper-Euclidean” where a general manifold is compared in a
certain way with R".

V. The last but not the least argument in favour of geometry is applicability
of geometric ideas (and very rarely of techniques) to the solution of some
group theoretic problems. Unfortunately, this is an exception rather than the
rule but the situation will probably change with the development of the field.

(I do not know how convincing the above evidence truly is. After all, the
actual reason why one approaches a problem from a geometric angle is because
one’s mind is bent this way. No amount of rationalization can conceal the
truth.)

0.4. About this paper. Our purpose here is to demonstrate the efficiency
of the geometric language for defining invariants and isolating interesting
properties of groups. In many cases we just specialize the standard notions of
the asymptotic geometry to groups in order to make them known to the group
theorists. We do not attempt a serious study of our invariants and leave the
standard questions wide open. On some occasions we treat simple examples
lying immediately on the surface. Often we speculate on the possible outcome
of the game only not to lose reader’s attention, even when we have no inkling
of a viable approach to the solution. Thus the readers of this paper should
not expect new theorems (not even half proved ones), but they may come
across some amusing problems.

Remarks on the language. We develop many of our notions in the geo-
metrically friendly surroundings of Riemannian manifolds and similar spaces.
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This immediately applies to groups in so far as the quasi-isometry invariance
of the concepts in question is insured. Namely, in order to attribute some
geometric property Pr to a group I', we just require Pr for some (and thus
every) manifold X quasi-isometric to I, where, in addition, we may impose
some specific condition on X (e.g. being simply connected, contractible etc)
if this is needed for the introduction of Pr. On the other hand if we do
not want to bother with the quasi-isometry invariance we have to make our
choice: either we insist Pr is satisfied for all X (with some specified condi-
tions) quasi-isometric to I' (sometimes we must insist on a proper isometric
action of I on X)) or we only require the existence of some X quasi-isometric
to I' which has Pr. Of course, when a quasi-isometry invariance of some
property is unknown it adds a problem to our list.

0.5. Random historical remarks. The first distinctively asymptotic ideas
in geometric group theory appeared in the mid-fifties in the papers by Efre-
movic [Ef], Folner [Fo] and Svarc [Sv]. Folner gave a geometric criterion for
amenability of a finitely generated group I'. The notion of amenability comes
from ergodic theory where a group I' (which may be infinitely generated) is
called amenable if every continuous action of I' on a compact space has an
invariant measure.

0.5.A. Folner Criterion. T is amenable if and only if there exists an ex-
haustion of T by finite (Folner) subsets F, C F; C ... C F; C...T, such that
for every d > 0 the d-boundary 9 F; (defined below) of F; has asymptotically
a smaller number of elements than F;,

' limsup card(04F;)/card F; = 0

$—+00.

0.5.A,. Definition. The d-boundary of a subset F in a metric space I' consists
of the points z € F whose distance to the complement I' — F' does not exceed
d. (An alternative definition which is as good for the present purpose is where
AT consists of the points in [ — F within distance < d from F.)

0.5.A}. Erzample. Folner’s criterion immediately shows that every finitely
generated Abelian group is amenable. On the other hand the standard exam-
ple of a non-amenable group is the free group F; on two generators. Some peo-
ple naively believed for some time that every finitely generated non-amenable
group should contain a copy of F; but to day there are counterexamples which
are infinitely presented (see [Ols]). One still has no construction of a finitely
presented non-amenable group containing no F;.

It is useful to reformulate the Folner criterion with the emphasis on non-
amenability.



12 Asymptotic Invarients of Infinite Groups

0.5.A,. Isoperimetric form of Folner criterion. A group I is non-
amenable if and only if there exist positive constants d and C, such that
every finite subset F C T satisfies

card F < C card 8;F (+)

This inequality immediately brings to one’s mind the classical linear isoperi-
metric inequality for bounded domains € in the hyperbolic space H",

Vol,, < const Vol,_,99. (%)

In fact, the similarity between (#) and (}) can be made precise as these
inequalities are equivalent for quasi-isometric spaces satisfying the following
bounded geometry conditions.

0.5.A;. Definitionas.

(a) A discrete metric space I' is said to be uniformly quasi-locally bounded
(u.q.-1.b.) if there exists a function N(d), d > 0, such that every ball BC T
of radius d has

card B < N(d).

(b) A Riemannian manifold X has locally bounded geometry (1.b.g.) if there
exist positive constants ¢ and A such that every ¢-ball in X is A-bi-Lipschitz
equivalent to the e-ball By C R". (This means the existence of a bi-Lipschitz
map B — By with the implied constant A, compare 0.2.C.)

0.5.A,. Ezample. Every finitely generated group I is u.q.-1.b. Every Rie-
mannian manifold X without boundary whose full isometry group is cocom-
pact on X has Lb.g. (If X has a boundary the definition needs a minor
adjustment.)

0.5.A;. Proposition. LetT be a discrete u.q.-1.b. space and X a Riemannian
manifold having L.b.g. If X is quasi-isometric to ' then the inequality (+) for
T (i.e. for all finite subsets F C T) implies () for X (i.e. for all bounded
domains §} C X ) where the constant in () depends on C in (+) as well as
on the implied quasi-isometry. Conversely, () for X implies (%) for I'.

The proof appears obvious to a geometrically oriented mind and nowadays
even the hard core group theorists are beginning to agree with this view.

0.5.A4. Corollary. Let a discrete group I' admit a proper cocompact ac-
tion on X. Then T' is non-amenable if and only if X satisfies the (linear
isoperimetric) inequality (3 ).
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This applies, in particular, to the universal covering X of a compact manifold
V with » (V) =T.

0.5.B. Also in the fifties Efremovich [Ef] observed that the growth-rate of
the volume of the balls in the universal covering X of V, i.e.

Vol B(d) ford — oo,

depends only on the fundamental group I' of V but not on the particular
choice of V. In fact he pointed out (now it looks totally obvious) that
Vol B(d) for d — co grows essentially with the same rate as the correspond-
ing function Np(d) defined in 0.1,

Nr(d) = card Br(d)

for the balls Br(d) C T.

The ideas of the growth of balls, Folner sets and sets of conjugacy classes in
groups (especially in fundamental groups of manifolds of negative curvature,
see [Mar], [Mar];) were quite popular in the sixties among ergodic theorists
in Moskow and Leningrad. (Much of these ideas I learned at the time from
A. Vershik, D). Kazhdan and G. Margulis.) Then the geometers took a part
in the story and related the growth to curvature. The first results here for
non-negative curvature are due to A. Svarc [Sv]. Similar results were obtained
independently by J. Milnor (see [Mil]) who stated the following

0.5.B,. Conjecture. The growth function Nr(d) of a finitely generated group
[ is either polynomial (i.e. N(d) <1+ Cd* for some positive C and n) or
ezponential, which means

N(d) > A* forsome A > 1.

This conjecture is known to be true for linear groups (i.e. subgroups of GLy)
by the work of Tits who proved the following

0.5.B,. Freedom theorem (see [Tit];). Every finitely generated linear
group ' is either virtually solvable (i.e. contains a solvable subgroup of finite
index) or contains a copy of Fy, the free group on two generators. This implies
the conjecture, for the groups I' O F; obviously have exponential growth;
furthermore, the virtually solvable groups I' have Nr(d) exponential unless
they are virtually nilpotent. The latter are known to bave polynomial growth
and are, in fact, characterized by this property, see [Tit]; and references
therein.
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0.5.B;. Milnor’s conjecture is still open for finitely presented groups but
recently Grigorchuk found a remarkable class of finitely generated infinitely
presented groups of intermediate growth where N(d) behaves as A%, 0 <
a < 1. (Gngorchuk’s groups I act on an infinite regular tree fixing a vertex
and therefore are residually finite without being linear. The essential feature
of T responsible for the intermediate growth is the existence of mutually
isomorphic subgroups H C I" and H' is the Cartesian product I' x I' x T x
I'x T xT'xT'xT. See [Gri] for a comprehensive survey of the growth theory.)
The current version of the growth conjecture due to Grigorchuk reads

There ezists a > 0 (possibly a = % — ¢) such that either Np(d) grows faster
than A% or T has polynomial growth (and, hence, is virtually nilpotent).

0.5.B,. There is a simple link between growth and amenability.
If T is non-amenable then it has ezponential growth.

This immediately follows by applying the (linear isoperimetric) inequality ()
to the concentric balls B(d) C T.

Thus Grigorchuk's examples provide a new class of amenable groups. Prior
to his work all known amenable groups were obtained from finite and Abelian
groups (which are easily seen to be amenable) by the following three opera-
tions.

1. Eztensions: Here one uses the fact that if in the exact sequence 1 —
I't = T3 = '3 — 1 the groups Iy and I'; are amenable, then so is I'3.

2. Infinite unions: If I' is a union of an increasing family of amenable
subgroups then I is amenable.

3. Taking subgroups and factor groups: Every subgroup of an amenable
group is amenable and so is every factor group.

Notice that in the course of such a construction one may have intermediate
groups infinitely generated even if the final result is f.g., as was pointed out,
I believe, by H. Bass. Also recall that Grigorchuk’s groups are not finitely
presented and one has still no ways to produce finitely presented amenable
groups apart from 1, 2 and 3.

0.5.C. The main source of infinite groups in differential geometry is provided
by manifolds of non-positive sectional curvature, K < 0. One of the first
asymptotic results here is the following result by A. Avez (see [Av] and §6).

0.5.C,. Non-amenability theorem. Let V be a compact manifold without
boundary and K(V) < 0. Then the fundamental group of V is non-amenable
unless V is flat (and then x,(V) is virtually Abelian).
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The proof suggested by Avez is based on the following

0.5.C,. Non-amenability criterion. Let X be an n-dimensional Riemann-

ian manifold which admits a vector field Z with the following two properties
(i) the length of Z is uniformly bounded

sup || Z(z)]| < oo,
z€X

(ii) the divergence of Z is strictly positive,
:g& divZ(z) > 0.
Then every bounded domain €1 in X with a smooth boundary salisfies
Vol,.? < const Vol,,_,911. (+)

Furthermore, the conclusion remains valid if we replace (i) by the following
weaker condition (ii)o and additionally assume that X has locally bounded
geometry (see 0.5.A3).

(ii)o div Z(z) > 0 for all z € X and there ezist positive numbers d and ¢
such that for every ball B C X of radius d the integrated divergence of
Z over B is at least ¢,

/div Z(z)dz > «.
B

Idea of the proof. Integrate div Z over € and apply Stokes’ theorem.

Avez applies this criterion to the gradients Z of horofunctions in the universal
covering X of V. Recall that a horofunction h : X — R is a limit of a
sequence of additively normalized distance functions h;(z) = dist(z, z;) — ¢;,
where r; € X is a sequence of points going to infinity and ¢; is a sequence of
constants. If K < 0 then horofunctions h (as well as distance functions) are
(known to be) convex and so divgrad A > 0. In general, the strict inequality

divgradh 2e>0
needs strictly negative curvature,
K(X) <k <0,

but in the case where X covers a compact non-flat manifold V Avez produces
a horofunction h whose gradient satisfies (ii)o.
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0.5.C{. Remark. There is a version of the non-amenability criterion for
discrete spaces X (e.g. for groups I') where “field” signifiesamap Z : X —» X
and the conditions (i) and (ii) are replaced by

(i)’ dist(Z,id) < oo, i.e.
sup dist (z, Z(z)) < oo,
z€X

and
(ii)’ Z is strictly compressing, in the following sense
card (27}(z)) 22 forallz € X.

(There is a more general version of this criterion where Z is a multi-valued
map which assigns to each z € X a probability measure on Z.)

0.5.C,. Problem. Manifolds with sectional curvature K < 0 and their fun-
damental groups have been extensively studied for the last 20 years. Yet the
following fundamental question remains unresolved.

Let T be a finitely generated group of finite (cohomological) dimension which
means for us the existence of a finite dimensional aspherical polyhedron with
the fundamental group isomorphic to I'. (Recall, that “aspherical” here
amounts to the universal covering being contractible.) Does there ezist a
complete Riemannian manifold V without boundary with K(V) < 0 whose
fundamental group is isomorphic to T'?

0.5.D. The fundamental group influences the geometry of the underlying
manifold V most profoundly if V has strictly negative curvature, K(V) < k <
0. In fact, even if we change the metric of V the basic asymptotic geometry of
the universal covering V retains the distinctively hyperbolic behaviour. This
was discovered 70 years ago by M. Morse for compact surfaces V of genus > 2
(see [Mor]) and then extended to higher dimensional closed manifolds V' with
K(V) < 0 by Klingenberg (see [Kli]). (Warning: the main result claimed in
[Kli] is incorrect but the background discussion is valid and interesting.)

Hyperbolic geometry took a new turn in 1968 when G. Mostow (see [Most],)
discovered an amazing asymptotic proof of the rigidity of lattices in O(n, 1).
(The quasi-isometric structure of Mostow’s arguments was crystallized two
years later by Margulis [Mar]; and then extended by Mostow to other rank
one groups in his book [Most]; which contains a wealth of hyperbolic and
semi-hyperbolic ideas.)

0.5.E. The quasi-isometric approach to infinite groups has a measure theo-
retic (or probabilistic) counterpart, where groups are studied modulo the mea-
sure equivalence defined as follows. First we introduce the standard (proper
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cofinite) action of I' on a measure space X: the space X is isomorphic to
the union of the copies of the unit interval I = [0,1] indexed by v € T, i.e.
X =T x 7 and T acts by

(7 t) = (77, 1)

Now comes our

0.5.E;. Definition. 'y and I'; are called measure equivalent if there exists a
measure theoretic isomorphism I'y x I — I'; x I which brings the action of
I, from I’y x I to an action on I'; x I which commutes with the action of I's.
(Compare 0.2.C}.)

0.5.E;. Ezample. Let T, and T'; be (cocompact or not) lattices in a locally
compact separable group G (T is a lattice if G/T has finite measure). Then T,
and I'; are measure equivalent. In fact the left I';-translations on G commute
with the right T';-translations while for every lattice I' C G the measure space
G acted by TI' is T-equivalently isomorphic to T" x [.

The measure theoretic study of groups is often conducted in the language of
random walks on groups where the first results relating amenability to the
heat decay and the spectrum of the (combinatorial) Laplace operator are due
to H. Kesten (see [Kes]). Then H. Furstenberg introduced the key notion of
the (Furstenberg) boundary of ' (see [Fur]) and the development of these
ideas has culminated in Margulis’ super-rigidity and arithmeticity theorems
in the mid-seventies (see [Mar],s5). A parallel study of measure equivalence
for groups has been carried out by ergodic theorists under the banner of orbit
equivalence starting from a seminal paper by Dye [Dye]. One remarkable con-
clusion of this study is the measure equivalence between every two amenable
groups, see [C-F-W].

0.5.F. Finally we indicate a topological source of inspiration in geometric
group theory. From our asymptotic viewpoint the most important start-
ing events were J. Stallings’ theorem on the ends of groups (see [Sta];) and
Mishchenko’s approach (see [Mis]) to the Novikov higher signature conjecture
which followed the earlier remarkable work by G. Lusztig. (A special case of
the Novikov conjecture states that every homotopy equivalence between two
closed aspherical manifolds carries the rational Pontryagin classes of the first
manifolds to the Pontryagin classes of the second one. Mishchenko’s theorem
implies that this is the case if one of the manifolds admits a Riemannian
metric with non-positive sectional curvature. Despite the recent progress one
still cannot prove or disprove the full Novikov conjecture even in the above
mentioned case of aspherical manifolds.) Mishchenko’s method is based on a
construction of certain Fredholm representations of the fundamental groups
I' of manifolds of non-positive curvature. (A Fredholm representation of T' is
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given by a pair of actual unitary representations of T, say on Hilbert spaces
H, and H;, which are related by a Fredholm operator f : Hy — H; commuting
with the ' actions on H, and H; modulo compact operators.

Fzample: Take I' = Z, H, = H; = £3(Z)and f the multiplication by the
function ¢ : Z — R which equals —1 for z < 0 and +1 for z 2 0).

One may think that the infinite dimensional representation theory provides
a third asymptotic way in group theory parallel to the quasi-isometric and
measure theoretic ones. In fact there are some remarkable connections be-
tween representations and the geometry of groups stemming from Kazhdan’s
T-property, discovered by Kazhdan during the Moskow Congress of Mathe-
maticians in 1966. Instead of giving the definition we recall that by Kazhdan's
theorem every lattice in SL,R (e.g. SL,Z) for n > 3 has property T. For
example, (this was pointed out to me by Kazhdan) if ' ¢sT and " CT is a
subgroup for which the quotient space I'/T’ has subezponential growth (in an
obvious sense) then, in fact, T[T’ is a finite set. (This must be clear for those
who know the definition of T'. Just look at the obvious representation of T’
in £3(T'/T’) and observe that the subexponential growth delivers the trivial
representation weakly into £;(I'/I”) in the same way as such growth of the
group itself makes it amenable.)

0.5.F;. The “zero in the spectrum” conjecture. Let us indicate an
honestly asymptotic (i.e. quasi-isometry invariant) characteristic of infinite
groups I' belonging to the circle of ideas surrounding the Novikov conjec-
ture. We discuss here only the simplest case where I' admits a proper co-
compact action on a contractible manifold X without boundary, for exam-
ple, I' = x;(V) for a closed aspherical manifold V' (where X equals the
universal covering of V). Fix an equivariant triangulation of X and let
&, = £(X) be the space of square summable i-dimensional cochains (these
are functions on the set X; of i{-simplices and we require them to be in
£,(%;)). Both boundary and coboundary operators dandé are £,-bounded
and they are mutually adjoint. One defines the combinatorial Laplace op-
erator A, = Ao DA D DA, n =dimXon £ =6 - by
A, = 3§ + 63 (compare §8 where we use slightly different notations). This
is a bounded self-adjoint operator on £ which is non-strictly positive. The
non-strictness may be due to the £;-cohomology in some dimension ¢, that is
the kernel of A; : & — £, denoted LoH (X) (which is independent of the
choice of a T-invariant triangulation). It may happen that L H is zero yet
A, is not strictly positive, i.e. spec A. 3 0. This happens when there exists
an “almost kernel” of A; for some 1. More precisely, there exists a sequence
p; €6, 7 =1,2,..., with “(p,'“t’ =1, for all 7, such that

lAipjll,, = 0 for j — oo.
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Ezamples. (a) If we look at the Ag-component of A, which corresponds to the
ordinary Laplace operator on functions then (obviously) LA =0 (provided
T is infinite and X is connected) and that specAg 3 0 if and only if ' is
amenable (compare [Kes]).

(b) Let X be a symmetric space of non-compact type. Then one knows (this
is non-trivial) that LH =0unlessi= %dim X. Yet spec A; always contains
zero for some i (see §8). For instance, if X = H?**! the odd dimensional
hyperbolic space (of constant negative curvature), then &H (X) = 0 but
specA; D 0fori =k, k+1. (If X = H, then HH (X) # 0).

It is not hard to show that LH depends only on I' and that the vanishing
or non-vanishing of &H for a given i is a quasi-isometry invariant of T
Similarly, the strict positivity of A; (i.e. non-inclusion 0 ¢ specA;) is a q.-
i. invariant of T

Notice that the strict positivity of A, is equivalent to the bound

(Bip, p) 2 Aol (+)

forall p € £ and a fixed A > 0. The upper bound of the possible A’s marks the
lower bound of spec A; and so (+) is equivalent to specA; > A. On the other
hand, the inclusion 0 € spec A; expresses the non-strictness of positivity of
A, which means that for every A > 0 there is a cochain ¢ € £(X) violating
(+). (These p for A — 0 constitute the “almost kernel” of A; mentioned
earlier.) Then the strict positivity of A, (or 0 ¢ spec A.) signifies A; > 0
forallt =0, 1,..., n =dim X. This can be equivalently expressed in terms
of 6 rather than A,. Namely one looks at the £;-cochain complex (£3,4),

Y B LI S

and observes that (£3,6) is chain contractible in the category of topological
vector spaces and bounded operators if and only if A, > 0. (This suggests a
continuation of the present discussion to the £,-category for p # 2, see §8.)

To clarify further the idea of £;-cohomology and of spec A, near zero we turn
again to the case I' = 7, (V) for a compact V and let Vi=V k= 1, 2,...,
be a sequence of finite coverings which converges to the universal covering V of
V in the following sense. For every compact subset B C V there exists k such
that the (natural covering) map V — ¥, is injective on B. (Algebraically,
one could say that the intersection of the covering subgroup m, (Vk) c m(V)

consists of {id}.) Denote by b; (Vk) the normalized Betti numbers

3; (\_4) = rank H' (Vk,R) /indyg,
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where indy = card (n(V)/n(Vl,)) that is the number of the sheets of the

covering Vi — V. These numbers are related to the £,-cohomology of X = V
by the following

0.5.F,. Kazhdan’s criterion (see [Kaz];, [Ch-Gr]3). If

lim sup 3 (Vk) >0, (*)

k—oo

(i.e. if rank H* (Vk,R) grows proportionally to the number of sheets), then the
£;-cohomology of V does not vanish,

GH (V) #0.

Proof (compare 8.A3). Using (*) one can (easily) produce karmonic i-cochains
& on V; (harmonic means A; & = 0) such that ||Ci]l,, = 1 and such that the
value of € on some simplex &; C Vi satisfies

|Ek (au)l 2e>0
for some ¢ independent of k. Then these cochains (obviously) converge (or
rather subconverge) to a non-zero harmonic £;-cochain on V. Q.E.D.
Question. Can one reverse Kazhdan’s criterion? Namely, suppose
LH(V) #£0.
Does it follow that H* (V;,,R) grows proportionally to indi (or grows at all
for k — 00)?

Next, we observe that Kazhdan’s criterion generalizes to the spectrum of
A, as follows. Denote by N, (Vk,A.-) the number of the eigenvalues of the

Laplace operator A; on V; in the interval [0, A].
Extended Kazhdan’s criterion. If

limsup Ny (Vi, A;) / indi > 0,

k— o0

for every A > 0 then the Laplace operator A; on the universal covering V
contains zero in the spectrum,

speciA; 3 0.
Notice that this criterion is (easily) reversible. Namely,

If 0 € spec A; on V, then llmlnf Ny (Vk, )/mdk >0 for every A > 0.



Introduction 21

Finally, we observe that everything we have said has a de Rham counterpart
for the Hodge-Laplace operator on the differential forms. In fact, the de Rham
L;-cohomology of X (e.g. of ‘7) is canonically isomorphic to the combinatorial
one and the strict positivity of A; on i-forms is equivalent to that for the
combinatorial A;.

Now we are ready to formulate the zero in the spectrum problem for T’ acting
on a contractible manifold X without boundary with X/T' compact.

0.5.F". Problem: Does the spectrum of A, on £5(X) always contain zero?

The positive answer is known for a variety of groups, first of all for those,
where X is hyper-Euclidean, i.e. admits a proper Lipschitzmap X — R*, n =
dim X, of non-zero degree (see [Gro),3 and §8).
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1. Asymptotic Methods

Nets and thickenings; asymptotic connectedness and contractibility; large-
scale dimension and (co)homology; width and filling invariants.

Let us indicate some simple operations which allow one to go back and forth

from discrete spaces to “continuous” ones in the same Hausdorff equivalence
class (see 0.2.A).

1.A. Nets. A subset Y in a metric space X is called a net if

dist(z,Y) z vlglt; dist(z,y) < ¢ (%)
for a fixed ¢ independent of X. If we want to keep track of the constants this
is called a c-net (and if for some reason the constant is perceived as a small
one, we speak of e-nets).

Y is called §-separated if

dist(yy,y2) = 6§ for all y; # y,.

Obviously, for every ¢ > 0 there exists a 2c-separated c-net in X. (For
example, every mazimal 2c-separated subset Y C X is a c-net.)

1.A’. Lipschitz on the large-scale. Using nets one can give another
version of the definition of quasi-isometry (which is obviously equivalent to
the one in 0.2.C): X, is quasi-isometric to X; if and only if there exist nets
Y, € X and Yz C X;, which are related by a bi-Lipschitz homeomorphism
Y1 & Ya. More generally, call f: X; — X; a A-Lipschitz map on d-scale if

distx, (f(z), f(z")) < A disty, (z,2") + d,

for all z,, z} € X. If the constants A and d are suppressed we say that f is
a large-scale Lipschitz map. Clearly, every such map is honestly Lipschitz on
every separated net Y; C X,.
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One can think of quasi-isometries as of isomorphisms in the category of metric
spaces and large-scale Lipschitz maps. To be precise, one should identify
certain maps. Namely, call f, g: X; — X; parallel if

distx, (f,9) oot :2£ distx, (f(z), 9(z)) < oo.

This (obviously) is an equivalence relation and we take the equivalence classes
of large-scale Lipschitz maps for the morphisms in our category. Then iso-
morphisms in this category are quasi-isometries.

Questions. One may think that for separated (i.e. §-separated for § > 0)
spaces quasi-isometry is the same as bi-Lipschitz equivalence but, in general,
this is not so. Yet, the examples I have in mind are rather artificial and I do
not know of a practical criterion on a metric space X that would insure a bi-
Lipschitz equivalence between every two separated nets in X. This property of
nets seems to be unknown even for X = R™, n > 2 (if X = R, then every two
separated nets are, obviously, bi-Lipschitz) as well as for the hyperbolic spaces
H™, n > 2, and infinite regular trees. Similarly, one does not know when two
subgroups of finite index in a finitely generated groups I' are mutually bi-
Lipschitz equivalent. For example, are the free groups F; and F3 bi-Lipschitz?
When is I' bi-Lipschitz to T x Iy for a finite group I'y?

1.B. Thickenings. This is a passage from a net to an ambient space. Namely
a c-thickening of a metric space X is a larger metric space Z O X whose
distance function extends that of X and such that X is a c-net in Z.

With this notion we can give a different version of the Hausdorff equivalence:
Xi w X3 if and only if X, and X, possess isometric thickenings. This is

obvious.

Ezamples of thickenings. (a) Join every two points z; and z; in X with
dist(zy,z2) = d < 2¢ by a copy of the segment [0, d] and equip the resulting
space Z = {[0,d]s, £, | 71,22 € X} with the obvious metric. We mean the
mazimal metric whose restriction to X is < disty and whose restriction to
each copy of [0,d] is < the standard metric on [0,d]. (From now on we call
metrics of that kind “obvious” or “maximal” and do not say more, compare
[Gro]14.) Clearly this Z is a c-thickening of X. For example, if X is a group
I' with a word metric then this Z for d = 1 is the Cayley graph of the group
T.

(b) The above construction can be generalized by replacing [0,d] by a k-
dimensional Euclidean ball B or radius ¢ = d/2 and by attaching to X the
copies of this ball using all distance decreasing maps ¢ : 3B — X (where
3B denotes the boundary sphere). This is again a c-thickening of X. For
example, if X is the Cayley graph of a finitely presented group I' where all
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words in the presentation have length < ¢, then this thickening Z for k = 2
contains the universal covering of the standard cell 2-complex associated to
the presentation of I'. Notice that this Z is simply connected.

(c) The Rips complex. Assume for simplicity’s sake that X is a discrete space
and let P4(X) be the simplicial complex whose vertex set equals X and where
a subset S is spanned by a simplex if and only if the mutual distances between
the points in S are all < d. Here again there is a natural metric in Py(X)
which makes it a thickening of X. This is named after Ilia Rips since he made
the following simple and beautiful observation: IfT is a word hyperbolic group
with the word metric then Py(T') is contractible for all sufficiently large d. (See
[Gro]y14. This is the only case I know of where there is canonical contractible
thickening of a metric space.)

(d) Loo-thickenings. Embed X into the space Loo(X) of bounded functions
¢ on X, with the sup-metric: dist(p,%) = sup |p — |, by the embedding
X

z — p(z') = distx(z,z') — distx(zo,z’) for a fixed point z, € X. This
embedding is (obviously) isometric and the c-neighbourhoods of X «— L (X)
are c-thickenings of X which are universal in a certain sense.

1.C. Large-scale k-connectedness. We have already discussed 0-connec-
tedness in 0.2.A;. Now we generalize and say that X is large-scale k-connected
if for every thickening Y D X there exists yet a bigger thickening Z O Y which
is k-connected in the usual sense, i.e. Z is path connected and

ﬂ'.‘(Z)=0, i=1,...,k.

Warning. A path connected space is automatically large-scale connected but
this is not so with the k-connectedness for k > 1 (to see this look at Fig. 3 in
1.D,).

1.C,. Ezample. A finitely generated group T' is large-scale 1-connected (i.e.
simply connected) if and only if it is finitely presentable. This is obvious.

1.C}. One may try to modify the (word) metric of an infinitely presented I'
in order to recapture the (asymptotic) l-connectedness. For example, when
attaching (to the Cayley graph) the 2-disks corresponding to the relations one
may take the (maximal) metric for which every disk has metric < the unit
cone over the boundary which is a circle of the length = number of the letters
in the word w in the relation w = 1 associated to the disk in question. (An
essentially equivalent way to organize the new metric is by insisting that every
disk has diameter < 2.) Every piece of the above word w in this new metric
has diameter < 2 which makes I locally infinite. This can be corrected by
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somehow ordering the relations (e.g. according to their lengths) ry, ra, ..., i,
..., and making a new distance for which diam D; grows as a given sequence
; satisfying p; — oo fori — co. The geometry of such metrics may be
interesting.

1.C3. The above example (1.C,) obviously extends to all dimensions.

A finitely generated group T is k-connected on the large-scale if and only
if there exists a proper simplicial action of T on a (k + 1)-dimensional k-
connected simplicial complex X with compact quotient X/T.

The proof is (neatly) obvious in view of (b) in 1.A’. In fact, every thickening
of a (k—1)-connected space to a k-connected one can be achieved by attaching
(k 4 1)-balls and this can be done I'-equivariantly if required. What is more
interesting is the following

1.C). Corollary. The ezistence of the above X acted upon by T is a q.-
i. (quasi-isometry) invariant of T

Ezample. Let T have H3(T,R) infinite dimensional (see [Sta];). Then it is
not 2-connected on the large-scale and is not quasi-isometric to any group
[Y = x,(P) where P is a finite polyhedron having x;(P) = 0.

1.C3. Combing. A family of maps f;: X = Y, t € T, is called §- continuous
{on t) if the jumps at the discontinuity points ¢ are uniformly bounded by
8. More precisely, for every bounded subset B C X, every t € T and every
8’ > & there exists a neighbourhood S C T of ¢, such that

disty (fi(z) - fu(z)) <
forallz € Band s€ S.

Ezample. Let f,: X — Y, t € R, be a continuous family which is, moreover,
uniformly continuous on bounded subsets in X, i.e. f; is 0-continuous accord-
ing to the above definition. Take anet Y C Y andletp: Y - Y' C Y be
some map parallel to the identity map id: Y — Y, (e.g. p’ moveeachy €Y
to a nearest point in Y'). Then the composed family of map f{ = p/ o f; clearly
is 6-continuous for some § depending on & = dist(id, p’) < oo.

A family f, : X — X, t € Ry, is called a combing (see [E-C-H-P-T}, [Ger])
or a (uniformly Lipschitz) contraction on the large-scale if

(a) there exist A, d > 0, such that f, is A-Lipschitz on the scale d for every
t € R+7
(b} f¢ is §-continuous in ¢, for some § > 0,

(C) f0=id:X—'Xv
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(d) fi converges to a constant map for ¢ — 0o0. More precisely,
dist(fi(z),20) = 0, t — oo,

where g € X is a fixed point and the convergence is uniform on the
bounded subsets in X.

Basic ezample. Let fi : X — X, t € Ry, be an actual (continuous) con-
traction of X uniform on bounded subsets, such that every f;, t € Ry is a
contracting, i.e. 1-Lipschitz map. (Take, for instance, the maps f, : R* —
R* for f(z) = e~*z.) Now, if we replace X by a quasi-isometric space
X', then what becomes of f; is a combing of X’. (In the above example
fi(z) = e~z the corresponding combing of X' is Lipschitz on both variables
t and z’, see §9 in [E-C-H-P-T].) Conversely, suppose we are given an X with
a combing and want to produce another space X’ quasi-isometric to X, such
that X admits an actual (Lipschitz) contraction. Probably, such X’ does not,
in general, exist but one can easily see that there always exists a thickening
X' O X such that the inclusion of X to X' is a contractible map. In fact one
could define the combing as a Lipschitz contraction of X in some thickening
X' > X. (This is how combing comes up in most cases of the real life.) Fi-
nally, we observe that the above contraction of X in X’ trivially implies that
a combable space is large-scale k-contractible for all k¥ > 0. In the case of a
combable group T this leads (see 1.C;) to the existence of an aspherical poly-
hedron P with x(P) = I', such that for all k the k-skeleton of P is a finite
polyhedron. This statement appears as Theorem 9.5.6 in [E-C-H-P-T] where
the reader may find a detailed discussion on combing and related matters.

1.D. Uniform connectedness. Consider a k-connected (in the ordinary
topological sense) metric space X and denote by R.(r), for z € X and r €
R, the minimal (better to say “infimal” if you want to be pedantic) number
R > r, such that the inclusion between the concentric balls in X around z

B.(r) C B.(R)

is a k-connected map, i.e. every continuous map of k-dimensional polyhedron
into B,(r) is contractible in B,(R). We say that X is uniformly k-connected
if
Ek(r) = sup Ry(r)<oo forallr €R,.
dd zEX

1.D,. Basic example. Let X be a k-connected locally finite polyhedron
which admits a proper cocompact action of a group I'. Then (obviously) X is
uniformly k-connected.
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1.D. Countecrezamples. (a) In general, a k-connected (even contractible)
space does not have to be uniformly k-connected. Take for example the Eu-
clidean space R® with a metric dist which makes R" isometric to the cylinder
S ! x R, away from some ball, see Fig. 1.

Fig. 1

Clearly this (R",dist) is not uniformly (k — 1)-connected (though it is uni-
formly (k — 2)-connected).

(b} In the above example the space (R, dist), not being uniformly (n — 1)-
connected, still admits a contractible uniformly n-connected thickening. Here
is how to make the non-uniformness of connectedness stable under thickening.
Let S;; be the n-dimensional Euclidean sphere of radius i from which we
remove an n-ball of radius j as in Fig. 2.

Fig. 2

Topologically, every S;; is homeomorphic to the n-ball, but the boundary
spheres are not uniformly contractible when i1 — oo for j being kept bounded.
Now we order in some way all S;; foralli > ; =1, 2,..., and put them on
the line as in Fig. 3.
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>®®®

Fig. 3

The resulting space is contractible but no thickening of it is uniformly n — 1-
connected.

1.D,. Ezercise. Let X be a uniformly k-connected and (non-uniformly)
(k + 1)-connected metric space. Show X is (k + 1)-connected on the large-
scale.

1.D,. Definition. X is called uniformly k-connected on the large-scale if it
admits a uniformly k-connected thickening.

In view of the above exercise the uniform k-connectedness on the large- scale
implies the earlier defined (non-uniform) one. On the other hand, if X = (T,
word metric) then, conversely, the (non-uniform) large-scale k-connectedness
(obviously) implies the uniform one. For example, every finitely presented
group I' is uniformly 1-connected on the large-scale and this connectedness is
reflected in the implied function R,(r). This function provides an interesting
invariant of I' on which we look more closely in §4.

Remark. The notion of uniform connectedness aims at the geometric charac-
terization of the universal coverings of compact aspherical manifolds. Namely
if ¥ — V is such a covering, then V is uniformly k-connected for all k and
this property (called geometric contractibility in {Gro},o) seems to provide a
strong low bound on the “size” of V (see [Gro);3).

1.E. Large-scale dimension. We start with the most natural but not very
flexible definition. First we say that a metric space Y is d-disconnected (or
has dimension zero on d-scale) if it decomposes into the union Y =) B,

i€l
where
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(a) sup Diam B; < D < oo,
iel

(b) dist{B;, B;) 2 d, for all i # j, where
dist(A, B) = ig{ dist(a, b).
B

Then we define the large-scale (or asymptotic) dimension of a metric space
X as the minimal number n, such that for every d > 0 the space X can be

decomposed into a union of n + 1 subsets, X = 0 X4, where each X; 1s
k=0

d-disconnected. We denote this dimension by asdim; X (where “4” serves

to distinguish this from another asdim defined later on). One can also define

asdim, as the minimal number n, such that for every d there is a covering of
X by bounded subsets, X = U B;, such that the d-multiplicity (see below)

of this covering is bounded by n + 1. Here the inequality

d-multiplicity < n 41
signifies that no ball in X of radius d meets more than n 4 1 subsets among
B;. (It is obvious that the new dimension is < than the one we started with;

then an obvious large-scale rendition of the standard dimension theoretic play
with coverings yields the equality of the two dimensions.)

Remark. Besides the integer n = asdim, X the above discussion provides
an extra quasi-isometry invariant of X. Namely, for each p > n we define
D,(d) as the minimal D in the above (a) for which X can be covered by p+ 1
d-disconnected subsets X, satisfying (a) and (b) with these D and d. The
new invariant is the asymptotics of D,(d) for d — co.

Ezamples. (a) If X = R™, then it is easy to show (with the classical dimension
theory) that asdim; = n and D,(d) = const, , d.

(b) if X is an infinite tree, then, obviously, asdim, = 1 and D,(d) = p~'d.

(c) Let X be the hyperbolic plane H2. Then asdim; = 2 and D;(d) < constd.
This is seen with concentric horospheres and coverings by bounded subsets
indicated in Fig. 4 (compare 1.E).

1.LE;. In order to get a better grip on asdim, we invoke the usual maps of
X to the (extended) nerves of our coverings of X by B;, ¢ € I. This is done
with the functions ¢; : X — Ry, such that

pi(z)=1 for z€ B,

pi(z) =0 for dist(z,B;) > d,

pi(z)=1-d" dist(z,B;) for dist(z,B;) <d.
These functions map X to the infinite dimension Euclidean space R and we
compose this map with the radial projection to the unit simplex A’ ¢ R
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Fig. 4

defined by Y. z; = 1,z; > 0. If the d-multiplicity of our covering is < n + 1
134

then this map lands in an n-dimensional subcomplex of A’ and the resulting
map, call it & : X — N, is A-Lipschitz for A = d~?, where N is given the
Euclidean metric induced from R! D N. Now, the essential property of our ®
is the uniform coboundness (defined below). To have this property we assume
that N is the minimal subcomplex of A’ containing the image ®(X), i.e. the
interior of each simplex o in N meets ®(X). Then, clearly

Diam®~'(0) < 2(D +d) < o

for all simplices o in N, where D and d are the constants characterizing our
covering. This implies the uniform coboundness of ® which we express here
by

Diam ®~'(M) < Cm

where M is an arbitrary connected finite subcomplex in N consisting of m
simplices and C = Cly is a positive constant.

Thus we arrive at the third definition of asdim,, i.e. the minimal number =,
such that for every A > 0 there exists an n-dimensional simplicial polyhedron
N and a A-Lipschitz uniformly cobounded map ¢ : X — N, where “Lip-
schitz” refers to the metric in N whose restriction to every finite subcomplex
K is induced from some R™ by the standard simplicial embedding K — R™.

Remark. Every simplex of N is isometric to the unit Euclidean simplex and
there is a unique maximal metnc on N with such simplices. The map ® is
not in general Lipschitz for this metric. Yet it is such if X is a quasi-geodesic
space. In fact, the map @ is a quasi-isometry in this case.



1. Asymptotic Methods 31

We leave to the reader the (straightforward) check of the equivalence of the
third definition to the two earlier ones and pass to an example where the
third definition makes the computation of asdim, easy.

1.E,. Ezample. Let X be a complete simply connected manifold without
boundary with bounded strictly negative sectional curvatures,

-0 <—c< K(X)<-d <.

Then we claim that
asdim, X = dim X.

The proof of the inequality as dimy > dim follows from the standard di-
mension theory (compare Example (a) in 1.E) and we concentrate here on
showing that asdim; < dim. We take a family of concentric horospheres
H. C X, t € (—o00, +00), (compare Fig. 4 above) and first observe that

anim+Hg =dim Hg.

In fact, every H; admits a cover by uniformly bounded subsets with d-
‘multiplicity n = dim H; for some (small) § > 0. Then we use the normal
[projection Hi,4 — H:, and observe that the cover of H, pulls back to a cover
of Hiyq of d-multiplicity n where d — oo for d — oco. (QOur convention
labout the direction of ¢ is such that the projections Hy — H, are contracting
for t' > t.) Thus, every H, maps to some (n — 1)-dimensional polyhedron
N, according to the third definition. On the other hand, since K(X) < 0,
there are natural maps N; — X once we send each vertex of N; to a point
in the subset of H; corresponding to this vertex. Namely, each simplex from
N, goes to the geodesic span of its vertices lifted to X. We compose every
such map N; — X with the projection to H;_4 for some d > 0 followed by
the map Hi_q — Ni_q. Thus we get maps, say peq : Ny = Ne_g which are
clearly A-Lipschitz with A — 0 for d — oo. Therefore, for large d one can
‘approximate p; 4 by simplicial maps and construct the simplicial complex N
by joining the cylinders of the maps p; 4, for 1 = 0, d, £2d,...,... —
Nyg—= Ny — No— N_g— N_g—.... Now it is easy to map X to N by a
A-Lipschitz uniformly cobounded map, where A can be made as small as we
wish. We leave doing this in detail to the reader.

Remarks. With the above example we see that the fundamental group T of a
closed manifold V of negative curvature has

| asdimy T = dim V.

If T is a general word hyperbolic group our argument shows that asdim, I' <
oo and by looking closely one can probably see that

asdimy I' < dim 0 T 4 1,



32 Asymptotic Invariants of Infinite Groups

where J., is the ideal boundary. (The natural conjecture reads asdim,I’ =
dim 8, + 1). Also, our argument seems to yield the equality

asdim, X =dim X

for the symmetric spaces with K(X) < 0 via the usual X = AN repre-
sentation (corresponding to K AN of the underlying Lie group). But the
evaluation of asdim, looks harder in the general (non-symmetric) case of
K(X) < 0 as well as for the solvable Lie groups (generalizing A- N associated
to the symmetric spaces). We shall see in the next section how to bypass
these problems with another notion of the asymptotic dimension (compare

[Swi]).

1.F. Dimension and width. The k-width of a metric space defined by
Uryson measures a certain distance from X to some k-dimensional polyhedron
N where the distance is understood as the infimal § for which there exists a
proper continuous map f : X — N satisfying

Diam f~*(v) < §, for all v € N.

(If X is not locally compact one should slightly refine this definition, compare
[Gro]i0,15.) Then the large-scale (or asymptotic) dimension as dim.X is defined
as the minimal n, such that every admissible thickening X' of X has

width, X' < o0,

where “admissible” means that X' is, in fact, a finite dimensional locally
finite polyhedron. (This somewhat restricts the class of spaces X to which
this definition effectively applies but it is good enough for finitely generated
groups I' which are the major characters of our narrative.)

Remark. As in the case of asdim, there is a finer invariant behind the above
definition, namely the asymptotics of width, B(R), k¥ < asdim X, for the
R-balls in X', as R — oo.

1.F,;. Basic ezample. Let X be a uniformly contractible (i.e. uniformly
k-connected for all k = 0, 1,...) manifold without boundary. Then

asdim X = dim X.

Proof. Let X' 5 X be a polyhedral thickening of dimension k. Then there
is a retraction r : X’ — X, parallel to the identity map X' — X' (i.e
dist(z',r(z')) £ C < 00} as easily follows from the uniform k-connectedness
of X. Thus

asdim X < dim X.
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Now, let f : X — N be a proper map with Diam f~!(v) < C < o0. We
take the cylinder C; D X of this map and construct as above a retraction
Cy — X which moves each point by a uniformly bounded amount. Then by
composing this retraction with the obvious map Cy — N we obtain a map,
callit A : X — X, which is parallel to the identity and which factors via our
f: X — N. Using again the uniform contractibility of X we observe that
parallel to the identity => properly homotopic to the identity and so h cannot
factor through N if dim N < dim X. Thus

asdim X > dim X.
Q.E.D. (See [Gro];0,16 for a more detailed discussion of this kind.)

Corollary. Let T be the fundamental group of a closed aspherical manifold
V. Then
asdimI' = dim V.

In particular, dim V' is a quasi-isometry invariant of I'.

Remarks. (a) It is clear that asdim; > asdim but the equality seemns unlikely
even in the above example.

(b) In the obvious cases the k-width of the R-balls in T for k < asdim I" grows
linearly as R — oo but I do not know what happens in general.

1.6. Asymptotic homology. It has been known for a long time (compare
[Tih]) that a discrete space (e.g. a group) X may harbour a non-trivial topol-
ogy at infinity, such as Hj for example, i.e. the set of the ends of X, as well as
the fundamental group at oo and the higher dimensional (co)-homology and
homotopy. The simplest definition of (co)homology at oo is as follows. First,
we consider the complements of concentric R-Balls in X, denoted X® C X,
which form a decreasing family and for every topological invariant, i.e. a func-
tor H, define H(X ™) as the limit (direct if H contravariant and inverse if H
is covariant) of H(XR®). (In the case of H = =, one should take extra care
of the base points.) Then we consider the (category of the) thickenings of
X and go to the limit again. Here we may take a representative sequence of
thickenings
Xcx,cXxpcC...

and take lim H(X ) for ¢ — oo, denoted L.S.H(X).

More recently, J. Roe (see [Roe];_4) focused attention on the relative in-
variants of this kind, such as the cohomology of X with bounded supports
(ie. };1_52’ H*(X,XR)), denoted H*(X,00) and the corresponding large-scale

cohomology L.S.H*(X,00) (which J. Roe christened “exotic cohomology™).

1.G,. Ezamples. (a) Let X be a uniformly contractible n-dimensional mani-
fold without boundary. Then the fundamental class of X defines a (non-zero)
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element in L.S.H.(X, 00) whose boundary is non-zero in L.S.Ha_,(X*). Co-
homologically, the fundamental class of X is also non-zero in L.S.H"(X, 00)
and it appears as the coboundary of somebody from L.S.H*!(X*). This
follows by the argument indicated in 1.F,. In fact, non-vanishing of L.S.H*
(or L.S.H.) insures the inequality asdim > k.

(b) Let X be an Euclidean (Bruhat-Tits) building of dimension n. Then
every n-flat gives a non trivial element (infinite cycle) in L.S.H,(X, 00) and
thus asdim X = n.

1.G,. Filling invariants. The large-scale cohomology is accompanied by a
variety of finer numerical invariants measuring the “size” of a chain needed
to fill in a given cycle. (See §5 and also [Gro)yo.)

1.H. Summary. We have shown in this section how the standard topologi-
cal invariants can be adjusted to measure discrete spaces on the large-scale,
Basically, we have two means, thickenings (e.g. Rips complexes) and nerves
of coverings by large but uniformly bounded subsets. The first objective of
the study is proving (whenever possible) that the ordinary cohomological in-
variants of groups I' are, in fact, quasi-isometry invariant. (We have shown
q.i. invariance of homological dimension of T’ in some special cases, but the
question is still open in full generality.) Next, we want to have a more system-
atic and coherent theory and to evaluate our invariants for as many groups
as possible. Another direction is an analysis of the behaviour of our invari-
ants under non-quasi-isometric maps, e.g. uniform embeddings (see §7 and

[Gl‘O]ls).
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Ultrafilters and the asymptotic cones Con, X and Con, X; connectivity of
Cony, for Lie groups and lattices; geometry of Cons and the space of the
word metrics.

The invariants of X in the previous §1 were produced by performing stan-
dard topological constructions on the large scale. Here we want to proceed
differently by defining a canonical asymptotic cone of X at oo whose ordi-
nary topological invariants will serve as large scale invariants of X. This cone
Cone X captures the geometry rather than the topology of X on the large
scale and it can be described informally as follows. Let us imagine an ob-
server who moves away from a metric space X and from time to time makes
an observation consisting in measuring finitely many distances between cer-
tain points in X. When the observer is located at distance d away from X he
concentrates on the distances which appear to him of bounded magnitude (as
he has a limited field of vision) which correspond to distances proportional
to d on the real scale. As the observer goes further away at some distance
d' which is much greater than d, the points seen earlier from the distance d
become indistinguishable; but now he is concerned with points within dis-
tance about ¢’ in X. It may happen by pure accident that the result of the
d'-observation is similar to the d-observation despite the fact that in real-
ity (i.e. in X') the observed objects have nothing in common. (Namely, X
may contain two subsets of points {z),...,zx} and {z{,...,z}} such that
distx (i, z;) are of order d, the distances distx(z},z}) are about d' and the
normalized distance d~' distx (z;, z;) are very close to (d')~! distx (2}, z}) for
all i and j.) Moreover, as the observer goes further and further away from X
he increases the number of the observed points, say he measures the distances
between k-points when he is positioned di-away from X. Suppose that all
these visual distances converge as k and di go to infinity (i.e. there are points
¥in X, i=1,...,k, k=1, 2,..., such that there exist limits

klgg d;* dist(zk, zf)

for all (z,7) ). Then the observer will see in the limit a certain (infinite) space
Y. (If the observer is unaware that his position changes and if all of the field
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of vision was eventually scrutinized and recorded, then he may be convinced
that Y is the real thing out there.)

If the R-balls Bo(R) C X around fixed points with the metrics B! distx are
uniformly precompact for B — oo then the above measurement process does
converge (or subconverge) in the Hausdorff topology on bounded subsets (see
[G-L-P}, [Gro]). But in the general case one has to resort to ultralimits.

2.A. Definition of Con, X via ultralimits (compare [Dr-Wi]). First
we recall that a non-principal ultrafilter is a finitely additive measure w (or
probability) defined on all subsets A C N, such that

(a) w(A) equals 0 or 1 for all A C N;
(b) w(A) = 0 for all finite subsets A C N.

Given a bounded function p : N — R one defines with w the (ultra)limit of
@ with respect to w denoted liuxln (i) or @(w) or p(oo) (as w is thought of as
an ideal infinite point attached to Z). This limit is uniquely characterized by
the following condition: for every € > 0 the subset J C N where ¢ is ¢-close
to p(w), i.e.

Ap={t € N|p(i) - p(w)| < €}

bas w(A;) = 1. (It is easy to see that the correspondence ¢ — (w) is a (order
preserving) homomorphism of the ring of bounded real functions on N into R
and so w can be thought of as a point in the Cech-Stone compactification of
N.)

Now we take an arbitrary metric space X, fix a point zo € X and consider
the set of maps f : N — X such that dist(zo, f(¢)) < const;i. For every two
such functions we define dist(fy, f2) as ¢(w) for @(2) = i~ dist(fi(s), f2(i))
where w refers to the chosen ultrafilter. This dist, is not truly a distance
as it may vanish on some distinct points, but we just factorize the space of
maps N — X by the relation dist,, = 0 and call the resulting metric space the
asymptotic w-cone Con,, X. If we do not care to specify w, we write Cong, X
and call it an asymptotic cone of X (at infinity). Intuitively, it is the maximal
space Y an observer may see from infinitely far away where the ultrafilter sifts
and selects an infinitely rare subsequence from d; such that all measurements
made by our friend observer converge.

A remarkable feature of Con,, is that for many concrete spaces (e.g. groups)
X the cone Con, X is not as disgustingly large as one could a priori expect.
For example, this Con, is finite dimensional for many X (though it is usually
not locally compact). Furthermore, the (essential) geornetry and topology of
Con,, X seem independent of w for many X.
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2.B. Exemples. (a) Abelian groups. Let X be a finitely generated Abelian
group of rank r. Then the tangent cone is unique and isometric to R" with
some Minkowski (Banach) metric. This is nearly obvious and one can use
here the Hausdorff limit without ultrafication (compare 2.C; and {G-L-P]).

(a") Nilpotent groups. Let X be a finitely generated nilpotent group. Then
again the ultralimit reduces to an ordinary Hausdorff limit which turns X into
a nilpotent Lie group G with a dilation. This is similar to the Abelian case
and quite easy (compare [Grols). What is more difficult to show is the unigue-
ness of the limit, i.e. an actual convergence (rather than subconvergence) of
(X, d~! dist). This is due to P. Pansu (see [Pan];).

(b) Hyperbolic spaces. If X is a hyperbolic space then every tangent cone is a
tree (i.e. an R-tree). Notice that the ordinary Hausdorff limit does not exist
here (apart from a few trivial examples) and the “ultradefinition” of Con,, is
a sheer necessity. Also observe that the limit formula

Cong X = tree

can be used as a definition of hyperbolicity (see [Gro]i4, [Pou}).

(c) Log-metrics. Start with an arbitrary metric dist and let dist’ = log(1 +
dist). Then Cons (X, dist’) is a totally disconnected space. Morcover it is an
sltrametric space,

dist(a, c) < max(dist(a,b),dist(5,c)),

and so all triangles in this Con,, are isosceles. This is true in general for
every metric dist (rather than logdist) where the large triangles are nearly
isosceles, i.e. if for every three point z, y and zin X

dist(z, z) < (1 + ¢) max(dist(z, y), dist(y’, z)),

where ¢ is some function in d = dist(z, z) which goes to 0 for d — oo. For
example, the metric on a horosphere of a hyperbolic space lias this property.

(c') Doubled horoballs. Take two horoballs in a non-elementary hyperbolic
space (e.g. in H™ for n > 2) and glue them across the boundary (horosphere).
Then Con,, of the resulting space X is obtained by gluing two R-trees across
subsets of extremal points. Thns Cone, X is a 1-dimensional space with a
huge (uncountably generated) .

(d) Baumslag-Solitar group. Consider the group I' presented hy (a,b | a® =
a®), where a® is an abbreviation for bab~l. There is a natural metric of
piecewise constant negative curvature on the corresponding 2-polyhedron P,
which is the mapping cylinder for the map §' — S' by z — 2?. Namely,
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we give the cylinder $! x {0,1] the constant curvature metric which is S'-
invariant and where the S'-orbits lift to horocircles in the universal covering.
Moreover, we make our choice, such that

length(S" x 0) = 2 length(S* x 1)

and then we glue the two ends together by the obvious (locally isometric)
map S? x 0 — S x 1. The universal covering P of the resulting polyhedron
P is obtained by gluing together countably many horodisks along horospheres
in a treelike fashion. In fact P is naturally fibered over the infinite triadic
tree sketched in Fig. 5

Fig. 5

with the fibers isometric to the horospheres in H? with induced metrics,
and these fibers are “metrically parallel” in P (as a family of concentric
horospheres in H?). It follows that Cong, P is naturally continuously mapped
onto an R-tree (which is Con,, of the above triadic tree) with all fibers totally
discontinuous. Hence, dim Con. P = 1. Furthermore, P contains infinitely
many pairs of horodisks glued across their boundaries and so x;(Con,, I~’) is
uncountably generated. (Our picture of P gives a clear geometric view on the
isoperimetric and the isodiametric properties of P established by Gersten: the
isoperimetric function is exponential and the isodiametric one is linear. The
extremal disks displaying such features are obtained by doubling truncated
horodisks across horocircles, compare the above (¢’) and §5.)

(e) Solvable Lie groups. Consider the semi-direct product § = Sol.4; of R
and R for the action of R on R" given by the diagonal matrix with the
diagonal entries en!,... e™!. There is a natural (left invariant for the group
structure in § ) Riemannian metric on S = R"o<R whose restriction to
H, = R™ x t equals the standard Riemannian (i.e. Euclidean) metric on
R™ x 0 = R" transported by the above diagonal matrix. For example, if
A=A =...= A, =X #£0, then § is (isometric to) the usual hyperbolic
space of constant curvature with the family H, of concentric horospberes in
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5. As we know (compare (c)) the distance function (metric) of S restricted
to Hy C S (or any other 1 for this matter) looks like log(Euclidean distance
in Ho)-

(¢') Lemma. If )i #0, i =1,...,n, then (Ho,dists) is quasi-isometric to the
Cartesian product of n horocycles (i.e. horospheres in the hyperbolic plane).

Proof. Denote by hi C Ho = R™ the i-th 1-dimensional coordinate subspace
inR® = H, (i.e. the eigenspace corresponding to e*') and let §; C S be the 2-
dimensional subgroup ki x R C § = Hy x R. This S;, as we know, is isometric
to the hyperbolic plane where ki serves as a horocycle. Then we look at the
map S — S; induced by the orthogonal projection of Hy = R™ to h{ C Ho.
This projection commutes with our action of R on R"™ and then it is clear
that the map § — S; decreases the Riemannian metric. Hence, it is distance
decreasing; consequently, the projection Hy — hj is distance decreasing for
the metric dists |Ho. Now it follows that (Ho,dists |Hp) is (quasi)-isometric
to the Cartesian product of (h{,dists A%), ¢ =1,...,n. Q.E.D.

Using this lemma we conclude as earlier that Cong,(Ho|dists Hp) is totally
disconnected and that
dim Cone, S = 1.

If all A; > 0 (or all < 0) then S is hyperbolic and Con,, is a tree. Otherwise
it has a huge (uncountably generated) fundamental group. To see this it
suffices to consider the case n = 2. Let us exhibit curves in § = R*<R
which nontrivially contribute to x,(Cony, S). Take the square 04 with vertices
(0,0), (0,d), (4,0) and (d,d) in R? (this square has size about logd in §)
and join the pairs of the adjacent vertices by minimal segments in S. One
should think of each edge of Oy C R? as an arc of a horocircle while the
minimal segments in S are given hy geodesic segments in the corresponding
hyperbolic planes. Here is an attempt to make a picture.

Thus we obtain a closed curved O in S of length about log d which meets R? x
0 C S at the four vertex points. It is not hard to see that the opposite edges of
this square of geodesics in S never comne close together, i.e. they are separated
by the distance of order log d, because the ambient (parallel) hyperbolic planes
are that far apart. It follows, that the sequence 0, (log d)~! dists) gives us
in the ultralimit a curve O in Con,, S which is Lipschitz equivalent to the
unit circle. Clearly, this O, is noncontractible (since dimCong, § = 1) and
by moving d and/or Oy we obtain a continuum of such curves O, in Con, S.

(f} Solvable groups S of R-rank k > 2. Consider a diagonal action of R* =
(Rz)k on R” and let § = R" < R* be the corresponding semi-direct product.
For example, if & = n and R* = (R:)‘r consists of the diagonal (k x k)-

matrices with positive entries then the resulting S is the Cartesian product
of k = n copies of the two-dimensional solvable group S; which is isornetric
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to the hyperbolic plane H? (see (€)). In this case Cone, S is the Cartesian
product of k R-trees.

k
Our next example is where k = n—1 and R* = (R;‘,) consists of the diagonal
(n x n)-matrices with determinant one acting on R".

1

Claim. The asymptotic cone of the solvable group § = R" o< R™! is simply
connected for k > 2, while x,_1(Cone, S) is an infinite (uncountably gener-
ated} group.

Idea of the proof. Let R?™! C R™ denote the i-th coordinate hyperplane in
R"and S; = R’ o< R™! C $. Every S;, as we already know, is isometric to
H? x H? x ... x H? and the orthogonal projections R® — R?, i =1,...,n,

n-1

induce Lipschitz projections S — S;. If we translate R? C R" in the normal
direction by ¢ we accordingly move S; and thus fiber S into the translates
Si(t), t € R, where each Si(t) is isometric to H; x ... X H, and receives a
Lipschitz retract of S. We have altogether n such fibrations for ¢ = 1,...,n,
we call their fibres semi-hyperbolic slices in S, and geodesic segments in these
slices are called s.h. segments in S.

Lemma. Every two points z and y in S can be joint by a curve (broken
geodesic line) a consisting of two s.h. segments joint at a single point such
that

length a < const dist(z,y) (*)

for some universal “const” (independent of z and y).

Proof. There obviously exist two semi-hyperbolic slices S;;(t,) and S;,(t2)
whose union U contains both points z and y. This U is a Lipschitz retract in
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§, since the union of two perpendicular hyperplanes in R* is such a retract.
It follows that the shortest curve a in U between z and y satisfies ().

Corollary. For every closed curve C in S there erists another closed curve
¢’ built of 2N s.h. segments such that

(a) N < const,
(b) length C’ < const length C ,
(c) C' meets C at N-points,

and such that the resulting N closed curves (built by the pairs of segments
from C and C') have

length < % length C.

Proof. Subdivide C into N segments of equal lengths and join their ends by
broken s.h. lines.

Now, to prove that Cons, S is simply connected it is enough to show that
(sequences of) broken curves C’ consisting of a fixed number of s.h. seg-
ments give rise to contractible curves in Con,, S (compare 5.A3). To see this
we observe that every our C’ is contained in some union U’ of N’ < const
s.h. slices. If n —1 > 3, we can add extra slices, so that the total num-
ber N” will be still bounded by some universal constant and such that
the new union U” D U’ is simply connected. For this we must just make
simply connected the corresponding union of hyperplanes in R™"!, that is
V" =U"N (0 x R*™1) = 0 x R™' = R, since U” = R™ x V". The rest of
the proof is taken care of by the following

Final Lemma. The curve C” bounds a disk in U" whose size is controlled
by the length of C" in the following sense: there is a A-Lipschitz map of
the unit disk D, such that 8D paremetrizes C” by this map and such that
A < const length D. In the terminology of §5,

Fill Span C" < length C".

The proof of the lemma is straightforward as we are in a complete command
over the geometry of the s.h. slices constituting U”.

With this lemma we see (compare 5.A3) that the curves C” give trivial con-
tribution to x;(Cone, S) which is exactly what was needed.

It still remains to show that x,_;(Cone S) # 0. To see that we take the
boundary 032 C R }(= (Ri)"—l) of the standard cube of size d and let
g =R*x0O}2CS.

Then we homotop 072 inside O} to another spherical surface, say 0 C O} C
S, such that the implied map 0% — 0’ is A-Lipschitz with A < logd. To
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do this we observe that every (n — 2)-face of O} is contained in a unique
semi-hyperbolic slice while every lower dimensional face lies in an intersection
of such slices. In particular, every edge of 032 lies in a hyperbolic plane. The
first stage of our homotopy consists in replacing the edges by s.h. segments
with the same ends. Then we fill in the boundaries of the 2-faces by minimal
surfaces in the corresponding slices etc. Thus we obtain ' C $ similar to
that considered earlier in (e) and the non-contractibility of the corresponding
sphere(s) in Con,, C appearing in the limit for d — oo is proved along the
same lines as in (e).

Remarks (a). The above consideration is inspired by the discussion in §12.4
of [E-C-H-P-T], where the reader may find another construction of 0.

(b) It seems that our argument leads to the vanishing of x;(Cong, S) for
i=1,...,n —3, but I did not check the details 100%.

2.B,. Open questions. Our study of the asymptotic cones probably ex-
tends with little effort to all connected (algebraic?) Lie groups as well as
p-adic groups. It seems that these groups G have pretty looking finite dimen-
sional cones Con,, G which are (essentially) independent of the choice of the ul-
trafilter w. (Besides Riemannian left invariant metrics on C one may use those
induced from some ambient groups G' O G and look at Con, (G|diste G),
compare §3.)

A next manageable class of groups is provided by non-cocompact lattices in
(real and p-adic) Lie groups. For example for ' = SL,Z, n > 3, one expects
% (Cone ') = 0ifi =1, 2,..., n—3, and one knows that x,_,(Con, T') # 0,
as this follows from the analysis in chapter 12 of [E-C-H-P-T}. (The vanishing
of xy for n > 4 seems to follow from our discussion on R"t< R*"! and the
considerations in chapter 12 of [E-C-I-P-T}. 1n fact, we expect the filling
span function (defined in §5) for these I' to be linear, FS(€) ~ £ and this is,
I suspect, is known to the authors of [E-C-H-P-T].) Now we suggest some
questions concerning Con,, I' for (more) general groups.

(¢) Find an example of a finitely generated (better, finitely presented) I where
Con,, T' is not homeomorphic (or, at lcast not bi-Lipschitz) to Con,, ' for
two ultrafilters wy and w;.

(M. Sageev indicated to me that this question should be treated in the general
framework of the model theory.)

(d) Does the non-vanishing of x,(Con, I') automatically imply that this =, is
infinitely generated? (Observe that the group Iso of isometries of Cone, T is
transitive on Cony I' and for every non-trivial & € 1(Cong, ') the elements
i.(a), i € Iso may span in =y an infinitely generated subgroup.)

(e) How non-free can 7y {Cong, ') be? For example, when can a given (finitely
generated) group be embedded into x,(Con,, I') for some 1I'?
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One could continue indefinitely with such questions but this appears pre-
mature at this stage as the major task lies in an actual determination of
Cong T for various groups I', for example, for amalgamated products and
HNN-extensions. (This is easy for the free products; for the amalgamated
products G, *y G the results depend on how much H is distorted in G; and
in Gy, compare §3.) |

Another asymptotically attractive class of spaces, more general than infinite
groups, is provided by leaves of foliations of compact spaces. For example
let X be a manifold of negative curvature and § C X be a horosphere with
the induced Riemannian metric. One asks what is the structure of Cony, S,
for example when this Con,, has finite (Hausdorff) dimension. (This would
follow from the boundedness of the ratios of the volumes of R-balls in S for
R — 0o, that is Vol B(R, s,)/ Vol B(R, s3).) Of course, one does not expect
much unless X has some degree of homogeneity, e.g. V = X/ Iso X is compact
and S appears as leaf of the horospherical foliations of V. In this (compact)
case one also wants to understand how Con,, depends on a chosen leaf in
this foliation and what happens when one deforms the metric in X. Similar
questions arise in the case of discrete (i.e. time = Z) Anosov systems where
the cones Con,, (stable leaves) are essentially determined by the dynamics.

2.C. Fine structures on Con,,. The space Con,, X, as we defined it,
encodes the geometry of the configurations of points z,,...,z: with mutual
distances dist(z;, z;) having same order of magnitude as these distances all go
toinfinity. But now let us try to include into the picture of Con,, more general
configurations of points, such, for example, as z, ¢ = 1,...,k, p=1,...p,
where the distances dist(z!, z¥) have order d, for i # j whilst the distances
dist(z?, z¥) are much smaller, say about v/d for all i, u and v. As we pass
to the limit for d — oo and normalize the distances by dividing by d, we
wish to keep track of dist(z!, z/) or at least of their mutual ratios. This can
be achieved by using the full power of the ultralimits where Con, X comes
along with the structure of a non-standard metric space whose distances take
values in the field of non-standard real numbers. To continue tbe discussion
in this direction we need some evidence that the non-standard Con, X may
carry an additional useful information about X but at the present moment
we have no convincing example.

2.C;. Geometry of Con,, and the space of the word metrics. Look
again at the most elementary example of I' = Z™ with a word metric or with
a metric coming from a Riemannian manifold X where I' acts discretely and
cocompactly. (In the latter case the orbit map v +— vz embeds T' — X for a
generic o and we speak of tbe distance function induced on I’ from X.) The
asymptotic cone for T’ with such a metric is unique and it can be described
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elementarily as follows. Rescale the original distance function on I' by
dist(%,72) = i~ dist(},73)

and observe for ' = Z" that the function d;(y) = dist;(id, y) is (obviously)
asymptotically subadditive, i.e.

d"-H' <d;+ d,’ + const,

and therefore, there exists a limit diste —hm dist;. This limit metric is (ob-
viously) scale invariant and hence extends to a Minkowski metric (associated
to a Banach norm) on RT = I' ®z R(= R"). It is now clear that RI" with
this extended metric dist., is canonically isometric to Con,, T'.

Let us indicate a simple corollary of the above discussion which indicates
possible generalizations to non-Abelian groups T'.

Asymptotic Lipschitz distance between metric spaces. Given spaces
X and Y we define AL Dist(X,Y) as the infimum of logarithms of those
numbers A > 1 for which there exists a A-Lipschitz on the large-scale quasi-
isometry X — Y whose inverse Y — X is also A-Lipschitz on the large-scale.
(To be precise we should make our map a bijection between some nets in X

and Y.)

This AL Dist is not quite a metric since AL Dist(X,Y) = 0 does not imply
that X isisometric to Y. But we agree to identify the spaces with AL, Dist =0
and thus every set of metric spaces becomes a metric space.

Ezample. Consider the word metrics in a group I' corresponding to all finite
generating subsets § C I'. The resulting metric space {(I', dists)} is denoted
by WMT.

Remark. One could modify the definition of WMT in several ways. For ex-
ample, one could enlarge the class of the metrics by allowing those induced by
Riemannian metrics in suitable X acted upon by I'. Another (more serious)
modification consists in changing the definition of AL Dist by restricting to
those quasi-isometries (T, dists) « (I',dists:) which are isomorphisms of I’
or, at least, isomorphisms between subgroups of finite index in I".

Now we return to I' = Z" and state the promised

Corollary. The metric completion of the space WMZ" is isometric to the
Banach-Mazur space BM, of n-dimensional Banach spaces. In particular,
the completed WMZ" is a compact infinite dimensional connected space.

Proof. The convergence dist; — dist,, shows that

ALDist((Z",dist), (Z",diste,)) =0
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which easily yields the Corollary.

Remark. If we modify the definition of W MZ" according to the above remark
we shall still arrive at the same completed space of metrics, isometric to BM,,.
Notice that BM,, appears as the quotient of the space of norms on R™, say
BM, = N,/GL.R, (where N, is quasi-isometric to GL,R) and WMZ" can
be described in a similar way. (Here one should take into account not only the
action SL,Z on the space of metrics on Z™ but also isomorphisms between
subgroups of finite index whose major representative is v — 7.

Questions. Is it possible (and worthwhile) to determine W MT for (more) gen-
eral I'? For example, when is WMT compact, bounded, has finite asymptotic
dimension, connected, etc?

Ezamples. (a) Nilpotent groups (compare [Pan], [Bab); ;). If T is a finitely
generated nilpotent group, then by Pansu’s theorem there exists a unique
asymptotic cone Cong, I' which is a nilpotent Lie group G with a (Finsler)
Carnot-Caratheodory left invariant metric. Moreover, (G, dist.,) admits a
self-similarity by some automorphism (dilation) of G. The space of such
(G, diste) is quite similar to the Banach-Mazur space and one nay expect
that W MT is rather simple (e.g. bounded) in this case. Here, one does not
know, in general, if I’ is quasi-isometric to (G, distos) = Cong, ' which causes
certain problems. Yet, such a quasi-isometry does exist if T itself admits a
dilation, i.e. a distance strictly increasing endomorphism e : ' — I'. Such an
endomorphism replaces 4 — ' for I' = Z" and makes T in all respects very
similar to Z"™,

(b) Hyperbolic groups. If " is a non-elementary hyperbolic group, e.g. I' = F;,
then the space WMT looks very large. For example, if we fix some generators
Y,-.-,7 in T and take the word metrics for {v,...,v,+} with variable 7,
then the resulting image of T in WMT (for ¥ — metric) seems unbounded.
{This is especially easy to prove for groups I’ having few quasi-isometries,
e.g. for cocompact lattices in Sp(n,1).) On the other hand, the (ergodic)
probabilistic considerations suggest that different word metrics on I' are “very
stmilar” on “very large” subsets in ' but one does not know how to make
this precise without fixing in advance some measure on a pertinent probability
space (of finite or infinite words in ). Yet one still hopes, inspired by the
Mostow rigidity theorem (in the shape of [Mar}s), that there is some natural
equivalence relation on WMT (for most hyperbolic I') whose quotient is a
pretty little space.

(c) Groups of higher rank. Let T be a cocompact lattice in a non-compact
sinple Lie group G of R-rank n > 2. Then T is full of free Abelian subgroups
of rank n. If we take one such subgroup A and restrict a word metric from
I' to (a non-word metric on) A we obtain a map WMT — BM, (= WMA).
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It is easy to see that this map does not depend on A, as any two flats in
the symmetric space G/(Max.Comp) admit a third flat asymptotic to both
of them. This can also be seen in Cong, I' which is built of uncountably many
copies of Con., A. Thus, although WMT may be uncomfortably large, what
remains in Con,, I', say WM Con,, I', is not bigger than BM,.

(d) In order to make a large space WMT more manageable one may use
some exhaustion by smaller (e.g. compact or bounded) subsets corresponding
to metrics on T restricted in a certain way. For example, if T is a hyperbolic
group, a good class of metrics consists of those which are é-hyperbolic for a
given § and such that the number of elements in the R-balls satisfy Nmbg <
exp CR for a given C. Now we may exhaust WMT by the subsets WM,TI’
built out of metrics on T with C + §~! < p. For most hyperbolic groups the
subsets WM,T are precompact in WMT for every p > 0. (See {Gro}i4 on
some remarks about the proof.)

Now we return to I' = Z™ with a metric dist as in the beginning of this section
and state the following recent result by D. Yu. Burago (see [Bur]).

2.C,. Burago’s Theorem. The asymptotic cone Cong(T") = (RT', dists)
has finite Hausdorff distance from (T,dist), i.e.

I' ~ ConnT.
Hau

Ingredients of the proof. The basic technical observation by Burago is the
following property of our metric dist on T'.

2.C]. Burago’s inequality.

dist(id,v) < %dist(id,‘y’) + const . (%)
Burago proves this inequality by constructing a path from id to + out of n-
pieces of the shortest path from id to 42. (Burago states and proves all his
results for T freely acting on a Riemannian manifold X homeomorphic to R”,

but this is just because he does not use the invariant language.) This is done
with another pretty geometric lemma attributed by Burago to F.L. Nazarov,

2.CY. Letp:{0,1] = R" be a C'-path. Then there ezists an open subset
A C[0,1)], such that

1) [Foa=1[ s (=32m),
A 0

where p’ denotes the derivative of p.
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(2) The number of connected components (intervals) of A is at most n.

(3) The length (i.c. the measure) of A is at most L

Proof (due to Burago and Perclman) Every point s = (ty,...1.) € R" lying
on the (topological) sphere z [t/ = 1 defines a partition of [0,1] into two

subsets, [0,1] = A} U A?, as [0 1] is covered by the n intervals

0 1
and, by definition, t € A% if it is contained in such interval, say

tal + ...+ 1], ]+ ...+ tinall,

where ;41 > 0 and t € A? if t;4, corresponding to ¢ is negative. Then we
have a (continuous!) map of our sphere to R" given by

so [ pa- [ pa,
A% A

which by the Borsuk-Ulam theorem vanishes at some s in the sphere. Then
we take the smallest of the two sets AY and AZ for A.

2.C,. Hemarks. (a) The above discussion suggests a variety of generalizations
to non-Abelian groups I'. For example, if " is nilpotent we also have a unique
Cong, I' and we may ask when this Con,, is " I'. 'This is quite unlikely to be

true in the general case, but not impossible if.I‘“l admits a dilation {e.g. T is the
Heisenberg group, {a,b, ¢ | [ac] = [bc] = 1,[ab] = ¢}). Even if the Hausdorff
distance from I' to Con,, I' is infinite one may look at the distances from
R-balls B3(R, X) in T to R-balls in Con,, I'. Any bound on these distances
better than

distysu(B(R; T'), B(R,Cong, IN)) < const R, for R — oo,

would be a pleasure to have in our possession, even in the special case of word
metrics on T.

(b) Burago's inequality (=) makes sense for an arbitrary (non-Abelian) group
I and is well known (and obvious) for non torsion v in hyperbolic groups T,
and one may conjecture this for more general semi-hyperbolic groups of some
kind. Furthermore, it is not hard to prove (») for non-torsion elements ~ in
the cocompact lattices in semi-simple (real and p-adic) Lie groups. In fact
the minimal path (in X) from id (i.e. o € X) to v (i.e. v(zo) € X) lies near
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the centralizer C, C T and (%) for v € T follows from (%) for v € C,. It
seems this argument works for the fundamental groups of closed manifolds
(and singular spaces) V with K(V) < 0, but for the small cancellation group
the situation is less clear.

(b') One may look further for inequalities more general than (*) of the form
¥ dist(id, w;) < const for some particular configuration of words {w;} in T\

Here, besides (+) (and similar relations concerning w; = 7') one knows a
variety of such inequalities for hyperbolic groups, starting with the inequality
defining 8-hyperbolicity in [Gro,.

(b") In the case of nilpotent groups ' with a dilation, i.e. an expanding
endomorphism e : [' — T, one asks for inequalities generalizing (*) where
v +— 4% is replaced by v — e(7).

(¢) T is non-nilpotent the space Con,, I lies very far from T in the Hausdorff
sense. Yet one may expect a version of Burago’s theorem in the following
setting. Suppose we have two manifolds X, and X; acted upon by I discretely
isometrically and cocompactly, such that AL Dist(X), X;3) = 0. The question
is whether X, o~ X3 and if not what is the bebaviour of the Hausdorff

distance between the balls B(R) in X; and X; as R — oo.

(d) One wonders if Lemma 2.C{’ extends to some non-Abelian groups T.
For example one may take a (long) word w in I', and ask what are possible
values of the product wyw;...w, € T for the n-tuples of disjoint subwords
wy,...,Wy, i1 w.
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3. Distorsion

Extrinsic geometry of subgroups and submanifolds; distortion and retra-
curvature of subgroups in Lie groups; polynomial, exponential and non-
recursive distortion.

Consider an embedding between finitely generated groups, I'y C T, such that
the generating set of I'p includes into that of I'. Then, clearly

distr, > disty- |To

and we want to understand by how much distr, is greater than distr |I's. The
relation between the two distances can be expressed numerically if we take
the concentric balls B(R) C I' around the identity and look at the distortion
function

disto (R) = R™* Diamr, ([ N B(R)).

If the metric distr, is Lipschitz equivalent to disty |I'p then the distortion is
bounded; otherwise it tends to oo for R — oo. For example, if T is a free
group or a free Abelian group, then the distortion is (obviously) bounded for
every o C T'. But we shall sec in 3.J and 3.K that the distortion sometimes
grows faster than any recursive function.

The group theoretic discussion has a Riemannian counterpart. For every
submanifold Xy C X one compares the distance in Y induced from X and
the distance corresponding to the induced Riemannian metric. Obviously
again disty, > disty [Xp and the distortion is measured as earlier by the
growth of Diamy, (X, N B(R, X)}. (Ilere, this diameter may depend on the
center of the ball B in X and, if one wishes to come up with a number, one
should take sup of the distortion function on X.)

The typical example of the bounded distortion is Xp = R* C R* = X. More
generally one takes a totally geodesic subspace Y in a complete simply con-
nected space X of non-positive curvature. In this case the bounded distortion
(obviously) comes from the following stronger property: Xo is a Lipschitz re-
tract in X. In fact, the normal projection X — Y decreases the Riemannian
netric and, hence, it decreases the distances as well.
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We have already met an instance of ezponential distortion, namely that of a
horosphere X, in the hyperbolic space X = H™ where the extrinsic distance
disty | X is about log distx,.

On the other hand, if a subset in a (general) hyperbolic space has sub-
exponential distortion, then, in fact, the distortion is bounded (see §7 in
[G[O]lq).

As on the previous occasions the group theoretic situation reduces to the
Riemannian one whenever I acts discretely, isometrically and cocompactly on
X, such that X, C X is invariant under [y whose action on Xj is cocompact.
A particular instance of that is a cocompact lattice I in a Lie group G such
that the intersection of T' with a connected subgroup Go C G is cocompact
in Go.

What follows is a series of examples where we evaluate the distortion.

3.A. Subgroups in GL,. The simplest instance here is that of a cyclic
subgroup generated by a single n x n matrix ¢ € G = GL,R. If some
eigenvalue, say A of ¢ has |A| # 1, then the subgroup {¢'} has bounded
distortion in G. In other words

distg (id, g‘) > const i,

as everybody knows. (Here and below G comes along with a left invariant
Riemannian metric.) On the other hand if all eigenvalues of g have absolute
value 1, then the distortion is unbounded. Moreover, if such a g is semi-
simple, it has

distg (id,gi) < const < oo,

which means infinite distortion in our terminology. 1If ¢ is not setni-simple,
then .
distg (id,g') = logi for i = oo

and so the distortion is exponential. For example, this is the case for every

untpotent ¢ # id in G, such as the matrix ((l) }) in GLj.

8.A,. Remark. The natural embeddings GL,R ¢ GL,C and GL,C C
G L3R have bounded distortion as well as the corresponding embeddings of
the SL,-groups. This is seen in the §L,-case by looking at the corresponding
symmetric spaces where the embeddings are geodesic. (In fact, the embed-
dings between semi-simple Lie groups always have bounded distortion.) Then
the G L-case easily reduces to SL. Thus we do not have to care much about
the ground field being R or C. (In fact, the above discussion extends to p-adic
fields as well.)
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3.A,. Algebraic subgroups. Let Go C G = GL.R be a topological con-
pected component of a real algebraic subgroup. We claim that the distortion
is at most ezponential in this case. To see that we first observe that the left

jnvariant distg is related to the (Euclidean) matrix norm ||g|| = f: lgi;)* by
y=1

distg(g,id) < const |log |Ig]] -

(In fact, distc(g,id) ~ log(1+ [lg —Id [1).) Secondly, we notice that a con-
pected (component of a) real algebraic subvariety X, C RM, always has
bounded distortion measured with balls B(R) C RV around a fized point in
RY. This follows by an elementary real algebraic argument (compare p. 124
in [Gro]12)- In particular, our subgroup Go C GL.R C R™ has bounded
Euclidean distortion and, therefore, the distortion with respect to the left
invariant metric distg is at most exponential.

3.A’,. Non-algebraic connected subgroups G, in G = GL,. All these
have at most exponential distortion but the obvious proof is non-conceptual.
One uses here the Levi decomposition and takes a cocompact solvable sub-
group So C Gp {whose distortion in G is essentially the same as that of Gy).
Then, working over C, one has S, inside of the group G’ of triangular ma-
trices whose geometry is seen with the decomposition G' = AN, where A
is the group of the diagonal matrices and N is the nilpotent (normal in G')
subgroup of the unipotent triangular matrices (compare 3.A;). We leave an
actual proof to the reader (compare 3.F).

3.A;. Unipotent subgroups. Let G, be a connected unipotent subgroup
in GL,. Then, over C, it can be realized by triangular matrices with the
units on the diagonal, It easily follows that Go has exponential distortion
in the following sharp sense: The induced metric distg |Gy is quasi-isometric
to log (1 + distg,) (compare (c) in 2.B). In fact this is already true for the
distortion of G, inside G’, the subgroup of triangular natrices in G (see 3.D).

3.B. Subgroups in nilpotent groups. Let G, be a connected subgroup
in a simply connected nilpotent Lie group G. Then, as is well known, the
distortion of Gp in G is (at most) polynomial, i.e.

distg IGO >C (distao)"

for some constants C, a > 0.

3.B,. FEzample: Heisenberg group. This is the only non-Abelian three-
dimensional nilpotent group G. It contains, as a cocompact lattice, the
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discrete group {a,b,¢ | [,b] = ¢, [a,¢] = [b,c] = 1). The center C C G
is one-dimensional, C = R, and

distg(id,t) ~ \/t, teR=C,

since [a", "] = ¢*’. On the other hand, all one parameter subgroups in this
G apart from C have bounded distortion.

3.B;. One-parameter subgroups G,. Every such Go C G has
distg | Go ~ (distg, )},
where k is the maximal integer, such that

Ge C [[G,G),...,G].

3.B;. Polynomial similarity between nilpotent groups and R". Every
simply connected nilpotent group G is algebraic and biregular equivalent to
R", for n = dim G. In fact the exponential map of the Lie algebra Lie G = R"
to G provides such an equivalence. Furthermore, the multiplication map

G xG — G, for (g,h) — gh™!,

is polynomial (for G identified with R* via the exponential map). On the geo-
metric side, the exponential map e : R® — G has the following “polynomially
Lipschitz” property:

The Lipschitz constant of ¢ on the balls B(R) C R" around zero grows (at
most) as R*, for some a > 0 (in truth, a < n).

In fact, our exponential e is an equivalence in the category of such maps: it
is invertible and e~! is also “polynomially Lipschitz”.

This property allows a “polynomial transplantation” of many features of R™ to
nifpotent groups G. For example, every connected algebraic subvariety Xo C
G (pot necessarily a subgroup) has at most polynomial distortion (where
the implied balls B(R) C G are concentric around a fized center). Next, G
satisfies the polynomial isoperimetric inequality in dimension k = 2 (which
was proved carlier by Gersten by more complicated means). In fact, G satisfies
the k-dimensional inequality for all £ < dim G, but here the argument requires
a little bit more besides the “polynomial Lipschitz” equivalence between G
and R (namely, some general properties of filling from [Gro};o).



3. Distorsion 53

3.C. Strict exponential distortion of G, in G. This sigpifies the asymp-
totic relation for the distances of far away points

distg |Go ~ logdistg, (%)

for dist — co. The starting example is that of the 2-dimensional solvable
group G which splits into semi-direct product G = A- N, such that agtag 1=
9t for all £ € R = N and a fixed ao € A(= R). Then, obviously Go = N
satisfies the above (*). In fact, our G is isometric to the hyperbolic plane and
N represents a horocycle.

A similar picture is seen in the discrete version of the above group, i.e. {a,b|
aba~! = &%) (which does not sit discretely in the above G), where the cyclic
subgroup (b) has strict exponential distortion.

8.C;. Let, more generally, N be a connected subgroup in a Lie group G, such
that there exists some a,,...,a; € G which ezpand N in the following sense:
for every sufficiently large R the subsets

BY(R) = (a;B(R,N)a;') NN C N
contain in their group-theoretic product, denoted
B' = {bby,..., b | b € B(R)},
the ball B(AR, N) for a fixed A > k, i.e.
B' D B(AR,N),

where B(R, N) denotes the R-ball in N around id for the metric disty. Then,
straightforwardly, N is strictly exponentially distorted in G.

3.C;. Ezample. Let G be a semi-simple group with the usual decomposition
G = KAN. Then N is strictly exponentially distorted in G and in AN.
Geometrically speaking, one has the symmetric space X = G/R = AN and
N appears as a normal orbit to a family of mutually asymptotic flats in X

corresponding to A. For example, if rank X =1, N is as just a horosphere
in X.

3.C]. Remarks on the asymptotic cone Con,, X. Let X be a symmetric

space of non-compact type which we view as the above solvable group, X =
AN,

Claim.
dim Cong, X =rank X = dim A.
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Proof. Project X — A by av — v and observe that this map, say p :
X — A is distance decreasing. Since the metric disty is logarithmic on the
orbits p~1(a), a € A, it becomes totally disconnected when we pass to Con,,
(compare 2.B). Thus Cony, X fibers over Cono, A = R¥, k = rank X, with
totally disconnected fibers. Q.E.D.

Remark. The above argument shows that mazimal flats in Con., X coming
from those in distance decreasing X are 1-Lipschitz retracts (of quite special
kind) in Cong, X which suggests a picture of an Euclidean R-building for
Cong X.

Questions. Let X be a complete simply connected manifold without boundary
of non-positive sectional curvature. Is Con., X finite dimensional? Does the
dimension of Cone X equal that of the maximal flat in Cong, X (or in X) if
the isometry group Iso X is cocompact on X? What is the relation between
Cony, X and the Tits boundary of X defined in [B-G-S)? One asks similar
questions for singular spaces X with K < 0, where one looks first at the 2.
polyhedra with K < 0. Then one asks these questions for “semi-hyperbolic®
groups and especially for the small cancellation groups. (See §6 for a more
extensive discussion on these problems.)

3.D. Non-distortion of certain solvable subgroups. The geometry of
horospheres dramatically changes when we go from spaces X with rank =1
(i.e. K(X) < —c < 0) to those of rank > 2 (where K < 0 and somewhere
= 0). Namely, we shall see presently that a generic horosphere in a symmetric
space X of rank > 2 has (amazingly!) bounded distortion.

38.D;. Ezample. Let X be the product of two hyperbolic planes H2. Here
“generic” geodesics are the non-singular ones, i.e. those which are neither
vertical nor horizontal. (In other words the singular geodesics are those lying
in the fibers A x H2 C H? x I1* and in H? x h, for h € H2.) A horosphere
normal to such a geodesic is intrinsically isometric to a 3-dimensional solvable
Lie group. In fact, if we think of H? as a 2-dimensional solvable group AN
(see 3.C) our product H? x H? is a 4-dimensional group where our horosphere
lies as a subgroup. Despite a strong convexity, this horesphere is undistorted
in the ambient space.

3.D,. Ezplanation. The following simple proposition strips off the mystery
and amazement from the above discussion.

Let G be a simply connected solvable group, h : G — A = R* a split homo-
morphism into an Abelian group, let Ay C A be a connected subgroup (i.e. a
linear subspace in R¥) and Go C G the pull-back of Ay, i.e.

Go = h™*(Ao).
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Ifthe kernel N = h=1(0) C Gy has strictly exponential distortion in Go, then
Gy has bounded distortion in G.

Proof. The exponential distortion condition implies that distg, N is quasi-
isometric to log (1 + disty). By the same token the (even smaller) metric
distg N is also quasi-isometric to log (1l + disty). Now the metric in G is
determined in a simple way by distance functions dist¢ N and dist4. To see
that, fix a lift A < G and write G = AN. Then distg(id, av} is (bi-Lipschitz)
equivalent to
distg(id, v) + dist4(id, a).

This equally applies to Go = Ao N and shows the equivalence of distg |G, to
distg, -

3.D,. Remark. Let Go = AoN be a solvable group as above and let us
additionally assume that the adjoint action of every element a € Ay on the
Lie algebra Lie N has at least one eigenvalue A satisfying |A\| # 1. Then it is
not hard to see that for any Lie group extension G O Gj the distortion of Go
in G is bounded.

Final remarks on the distortion of Lie groups. It is probably possible (and
not difficult) to give a complete description of the distortion of a connected
Lie group G, inside another one. Apparently, there are only three mutually
exclusive cases: bounded distortion, polynomial distortion and exponential
distortion and our examples suggest algebraic criteria to distinguish these
cases. [n fact one expects here finer results. For example, given a left invariant
metric on Gy one should tell if it comes, up to bi-Lipschitz equivalence, from
some G D Go.

3.E. Lipschitz non-retractability of G to G,. Although the above Gj
appears undistorted in G as far as the distance function is concerned the
embedding Gy C G may greatly (in fact, exponentially) distort areas and
volurnes (see §5). This may lead, in particular, to non-existence of a Lipschitz
{and even large-scale Lipschitz) retraction G — Gp unlike the situation one
has for the inclusion between semi-simple Lie groups. There is yet another
way to prove this non-retraction property using the asymptotic cones Con,..
For example, look at an embedding of the (n + 1)-dimensional solvable group
Gy =8 = AN for A=R and N = R" into the Cartesian product of n copies
of S2 (= Sol;z in the notations of (e) of 2.B), where

G=%x85x...x8=A"-N, for A=R"

Recall (see (e) in 2.B) that the group § = Soln41 is determined by the action
of A =R on N = R" which we assume diagonal (in the Fuclidean basis of
R") with the diagonal entries M, e*3!,... e*n', t € A = R (compare (e) in
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2.B). In particular S, is determined by a single A € R which we assume non.
zero. Thus S is isometric to the hyperbolic plane #?2 of constant negative
curvature. Now, every linear embedding of A = R to A’ = R", given by
t—t={gt}),i=1,...,n,definesamapof § = ANtoG =A'Nas N BN
Furthermore, the induced group structure equals that of § if A; = a;A for all
i =1,...,n. Thus by choosing ¢ = M\A~! we can always realize S by a
subgroup in G.

If we assume as earlier that all A; # 0, then the above embedding has bounded
distortion and, hence, induces a bi-Lipschitz embedding of the asymptotic
cones
Cong § — Cong, G = Cong H? x ... x H?.

The latter cone, as we know, 1s the Cartesian product of » trees while Con, §
may be non-contractible. In fact, it has infinitely generated =, if A} > 0 and
Az < 0. In this case there is no Lipschitz (not even topological) retraction
Cong G — Cony S and hence § = Solny1 is not a Lipschitz (not even large-
scale Lipschitz) retract in G = Sol; x Solz x ... x Sol,.

Question. Suppose all ); are positive. Does then H? x ... x H? admit a
Lipschitz retraction on the corresponding 57

Remark. The embedded cone Coneo{S) C Cone(H? x ... x H?) does ad-
mit a Lipschitz retraction in this case, because Con,, S is a tree. In fact,
every tree (or Cartesian product of finitely many trees, R* for instance) is
a Lipschitz retract in an arbitrary ambient metric space where it sits with
bounded distortion (everybody knows that). Yet one does not (seem to) know
if the hyperbolic space H™*! for n > 1 has this property. (Notice that § for
A = A =...= A, is isometric to "))

3.F. Retra-Curvature and distortion. One can measure the distortion
(or the asymptotic extrinsic curvature) of X C X by the expansion rate of
suitable retractions X — X,.

3.F;. Nilpotent Example. Let Go C G be an inclusion between simply
connected nilpotent groups. Then there exists a retraction p : G — Gp with
the following two properties

(1) Polynomially Lipschitz. The Lipschitz constant A = A(R) of p restricted
to every R-neighbourhood of G, i.e.

Ur(G) = {u € G| dist(u, Go) < R},

is bounded by
AR <C=FR"
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for some C,a > 0.
(2) Equivariance. The map p commutes with the (left) action of G, on G.

Proof. If the required retractions p exist for Go C G, and for Gy C G2 then
p also exists for Go C G;. Thus we can use induction on codim (Go C G)
and assume that Gg i8 a mazimal subgroup in G. If this is the case, then
necessarily codim Go = 1 and moreover, Gy is a normal subgroup. (This easily
follows from the nilpotency of G.) Now every one-parameter subgroup A, C
G transversal to G, defines a unique Gy-equivariant retraction p : G — Go
satisfying p~1(id) = Ao. Then the polynomial nature of the (nilpotent!) group
G (see 3.B.3) takes over and provides a polynomial bound on the Lipschitz
characteristic A(R) of this p.

Remark. The inverse of the exponential map e : R® = Lie(G) — G, which
establishes a polynomially Lipschitz equivalence between G and R®, sends
Go C G onto a linear subspace Lo C R™. Thus, linear projections R* —
Lo are transported by e~! to polynomially Lipschitz retractions. But these
retractions are not, in general, Gp-equivariant.

3.F,. Split extensions. Let Gy C G be a normal subgroup, such tbat the
quotient homomorphism splits

q:G—OG/G°=H%HoCG.
Then G = Hy Gy and we have two retractions G — Hy and G — Gp for
hago — ho and hogo — go respectively.

Claims. The first retraction G — Hy is Lipschitz; the second retraction,
G — G, is ezponentially Lipschitz, i.e. the function A(R) measuring the
Lipschitz constant of our retraction on Ur(Gp) C G satisfies

A(R) < C*® for some C > 1.

Proof. The first claim is obvious, as ¢ and s are Lipschitz. (Recall, that any
homomorphism between Lie groups or finitely generated discrete groups is
Lipschitz for our metrics.)

Now, we want to show that the second map, call it p : G — G is (at most)
exponentially Lipschitz for left invariant Riemannian metrics in our Lie groups
(or for the word metrics in the case of finitely generated groups). For this we
need the following obvious

Lemma. Let a group H act by automorphisms on G. Then

[h(9)le < lglc exp(Clhlg),
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where | - | denotes the distance from id (or the minimal word length) in the
group in question,

Back to our p : G — Gy, we recall that p(hgo) = go and so p(go k) =
p(hh~'gh) = h~'goh. Thus |p(hgo)ls, < |9olg, exp(C|Al,), and our claim
follows as distg(id, h) = disty(id, k).

3.F,. Corollary. The distortion of G, in G is (at most) exponential.

3.F,. Remark. If G D G, is a non-split normal extension of finitely generated
groups, then the distortion may be by far greater than exponential (see 3.Kj).
Also notice, that an extension always splits if the quotient group G/G is free
and then our exponential bounds remains valid.

3.Fs. Non-homogeneous case. An important example where the above
applies is that of a symmetric space X of non-compact type which can be
thought of as a (split) solvable group, X = AN. In particular, if

rank X = dimA =1
def

and thus K(X) < 0, the (nilpotent) group N appears as a horosphere in X
and our claim amounts to the well-known (and obvious) exponential bound
on the Jacobi fields along geodesics normal to a horosphere. Such a bound re-
mains valid for an arbitrary complete simply connected Riemannian manifold
X with

-0 < —a £ K(X) <0,

and therefore, the normal retraction of X on every horosphere $ C X is
exponentially Lipschitz. As a corollary we obtain the exponential bound on
the 2-dimensional isoperimetric (filling, compare §5) function in §,

Every closed curve of length € in S bounds a disk of area < expCE.

Proof. Our curve bounds a disk 12 of area < £ in X D §. Moreover, there is
such a (minimal) disk within distance £ from our curve and, hence, from $.
Then the retraction of D to S has the required exponential bound.

Remark. The above argument applies to the higher dimensional subvarieties
and yields the exponential bound on minimal fillings of cycles in S of all
dimensions.

3.F,. Quasi-nilpotent extension. Let G be a connected Lie group and
N C G a simply connected nilpotent normal subgroup. Moreover, we assume
that the adjoint action of N on Lie(G) is unipotent. The relevant consequence
of that is the following bound on the norm of Ad,¢,

| Adujl < (Iv|* + C) 1€l (+)
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where |v| = distn(id, ). The basic example one should keep in mind is where
G is the group of upper triangular matrices and N consists of the matrices
with unit diagonal entries.

Next, we take a connected subgroup Gy in G, such that the quotient ho-
momorphism G — H = G/N sends G, onto H and such that the group
N, = GoN N is connected. (Notice that Ny is connected provided H is simply
wnnected.)

Claim. There erists a Gy-equivariant retraction p : G — Gy such that

(a) pis ezponentially Lipschitz, (i.e. plUr(Go) is A(R)-Lipschitz with \(R) <
expCR for R — o).

(b) The restriction of p to N is polynomially Lipschitz with respect to a left
invariant Riemannian metric in N. Moreover, the norm of the differ-
ential of p on T(G) is bounded on N by ||D,(v)|| < Iv|® + B for all
veN.

Proof. According to 3.F), there exists a polynomially Lipschitz Np-equivari-
ant retraction N — Ny which then uniquely (and obviously) extends to a Go-
equivariant retraction G — Gp. Using () one easily obtains the polynomial
bound on D),(v) in (b). Finally, one obtains (a) by noticing that N has in G
at most exponential distortion.

3.F;. Solvable extensions. lLet G and N C G be as in 3.F, and let us
additionally assume that

(i) the factor group H = G/N is Abelian,

(ii) the extension G D N splits, i.e. the group /I embeds into G transversally
to N.

Proposition. Let G, C G be a connected subgroup for which the fibration of
G over the quotient space, i.e. G — G/Go, admits a continuous section (this
is equivalent to the existence of a continuous Gp-equivariant retraction G —
Go). Then there exists an ezponentially Lipschitz Go-equivariant retraction

G—’G().

Proof. Denote by Ho C H the image of Go in H and let No = Go N N. Then
we consider two intermediate subgroups,

(1) Go C G, which is the minimal connected subgroup whose intersection
with N is connected. This G, is generated by G, and the connected hull of
N in N.

(2) G,, which is just the pull-back of Ho C H under the quotient map G —
H=G/IN.
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Clearly,
GOG, D Gu D Go.

Now we retract G — G, according to 3.F, and G, — G, according to 3.F,.
The composition of the two retractions is a Go-equivariant retraction G — G,
which is exponentially Lipschitz as follows from 3.F; and (b) (not (a)!) in
3.F,.

Since Gy is a net in G this automatically gives us a “large-scale exponentially
Lipschitz” retraction G — G, without any extra assumptions on Gy, but if we
want to drop “large-scale” we use our assumption, i.e. the existence of some
continuous Gop-equivariant retraction G — Gy and hence, of Go — Go. One
can easily go from “continuous” to “smooth” which implies Lipschitz for the
latter retraction as Go lies within bounded distance from Go. We conclude
the proof by composing G — G, with Go — Go.

3.F;. Corollary. Let G = GL, and Go C G a simply connected solvabie
group. Then Gy is an ezponentially Lipschitz Gy-equivariant retract in G.

Proof. Working over C we have Gy in the group Gy C GL,C of uppe
triangular matrices to which the proposition applies and immediately yields
our corollary.

3.Fs. Remarks and open questions. (a) Let G D Gy be an arbitrary
extension of connected Lie groups. We can always assume that the maximal
compact subgroup Ky C Gp is contained in K C G and then we have a
Go-equivariant inclusion between the Riemannian homogeneous spaces

Go/Ko = Xo C X = G/K.

It seems very likely that there always exists a Gp-equivariant exponentially
Lipschitz retraction X — X,. Notice, that our proposition applies to a
cocompact solvable subgroup Gy C Gy and thus yields an exponentially Lip-
schitz Gj-equivariant retraction X — Xj, provided G is a subgroup in some
GL,. (In the general case one should be aware of groups like the universal
covering of SL;R but they do not seem to be troublesorne.)

(b) Our corollary 3.F; becomes especially useful if one recalls that SL,R is
quasi-isomelric to the symmetric space X = SL,/SO, which has a rather
straightforward geometry because K(X) < 0. In particular we see that the
usual isoperimetric inequalities in X imply exponential inequalities in Go
(compare 3.F; and [Ger]; 3.45).

3.G. Non-uniform lattices of rank 1. Let ' be a non-cocompact lattice i
a simple Lie group of rank 1. More generally, we may include in our discussion
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discrete groups I of isometries of complete simply connected manifolds X with
pegative curvature K(X), such that

(i) ~,0o<—a < K(X) < —¢; <0,
(i) Vol X, /T < oo but the quotient space is non-compact.

It is well known that such a T is finitely generated (see [Mar]y, [Gro];) and we
want to indicate the following properties of the corresponding word metric.

(1) Every orbit map I' = X for v v 4z, has unbounded distortion. In fact,
the distortion is strictly ezponential on certain cyclic subgroups C C T
which themselves are undistorted in T'. (In the Lie theoretic case this
applies to the distortion of I' C G.)

(2) The distortion of every nilpotent subgroup in T is at most polynomial.
(3) The asymptotic cone of T has dim Cong I' = dim X — 1.

Proof. One knows, that there exists a “core” Xy, C X that is a I-invariant
submanifold with boundary obtained by removing from X a disjoint union of
horoballs, such that X, /T is cornpact. Thus the boundary of X, consists of a
union of disjoint horospheres and the orbit maps I' — X, are quasi-isometric.

Take one horosphere in 8X,, say H C 8Xp C Xo C X and recall (this is a
well known result by Margulis and Heintze and Eberlein, see [B-G-S}) that
there is a nilpotent subgroup N C I' mapping H into itself, such that H/N
is compact. Since H is strictly exponentially distorted in X so is N. On the
other hand N is undistorted in " because H is undistorted in X,. In fact
there is an obvious (normal) retraction Xo — H which is 1-Lipschitz.

Now let Ny be a torsion free nilpotent subgroup in I'. Then one knows that
either I' preserves some horosphere, say H C 8X,, or ' is infinite cyclic
preserving some geodesic in X. In the latter case N, is a Lipschitz retract
in X and hence in ', which makes it undistorted. Next, if I' preserves H
(which, as we know, is a Lipschitz retract in X,) then the distortion of Np in
I'is the same as that of Np in the maximal NV preserving H, which is at most
polynomial.

Finally, to understand Con, I' (Which is bi-Lipschitz to Cone, Xo) one should
invoke the notion of the relative hyperbolicity from [Gro)y4. Then one can see
that Cone, I is contractible; moreover it is a kind of a (» — 1)-dimensional
“tree”, n = dim X, whose “branches” are copies of Con, N (or Cong H
which is bi-Lipschitz to N). In other words Cong, I' looks like (probably
homeomorphic to) the asymptotic cone of a free product of several nilpotent
groups. (The above is by no means a proof which needs a more careful analysis
of relatively hyperbolic groups.)

3.H. Lattices of Q-rank one. Here X is a symmetric space of rank > 2
and T is a lattice with rankql' = 1. The basic feature of such a ' (which
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we can take as a definition of rankg = 1) is the existence of a I'-invariant
core Xo C X where I" acts cocompactly and whose boundary is a union of
disjoint horospheres in X. Now, unlike the previous case, the subgroups in I
preserving the boundary horospheres are not nilpotent (or virtually nilpotent)
anymore but they remain (virtually) solvable in some cases.

3.H,. Ezample. Let X be a Cartesian product of hyperbolic planes X = H?x
...x H2 Then there are the famous Hilbert modular groups I of rankqT =1
acting on this X (which are by no means products of any groups discretely
acting on the hyperbolic plane). In the simplest case of X = H? x H? the
boundary horospheres of X, are identical to the solvable group S = Sol,
which is the semi-direct product for the diagonal action of R on R? with the
diagonal entries e* and e~ (compare (€} in 2.B). This group as we know (see
3.D) is undistorted in X = H?x H32, It follows that the inclusion Xy C X also
has bounded distortion and so the distortion of I' in the ambient Lie group
G = Iso X (which is a finite extension of PSL; R x PSL; R} is bounded as
well. (This drastically contrasts with the case rank X = 1.)

What we have just said about T acting on H? x H?, probably, applies to the
general Q-rank = 1 case (remember, we assume rank X' > 2) and shows that [
is undistorted in G = Iso X. Yet, there is no large-scale Lipschitz retraction
G — T (or, equivalently X — X,) because the solvable subgroups in G
corresponding to the horospheres on the boundary of X, are not Lipschitz
retracts in G. On the other hand each “boundary subgroup” Sr is a Lipschitz
retract in I’ (but not in G) since each horosphere H C 93X, is such a retract
in Xo.

3.H,. Corollary. If Sr is solvable then " contains an infinite cyclic subgroup
which is strictly ezponentially distorted in T.

In fact, each Sr contains such subgroups as easily follows from the geometry
of lattices in solvable groups, while St itself is undistorted in T.

Remark. (Pointed out to me by Enrico Leuzinger.) There are many groups
T with Q-rank one where the corresponding horosphere contains an essential
semisimple factor and so Sr is far from solvable. Yet the non-distortion
property seems to remain valid in these examples as well.

3.H,. Application to Con,, I'. The above discussion shows that Cone, T
embedds into Con., X and so

dim Cony, I' € dim Cone, X = rank X.

Then there are infinitely many maximal flats in X, (or in some R-neighbour-
hood Ur(Xo) C X) which eventually embed into Cone, I' and so

dim Cone I' = rank X.
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Furthermore, a8 Con,, I' continuously (even Lipschitz) retracts to Cone St C
Cone I the fundamental group of Cong, St, for each “boundary subgroup”
S ¢ I, injects into x1(Cony, T). Moreover, one can show (using the concavity
of 8Xo) that the images (of 71 (Cone, Sr) for the “boundary subgroups” Sr
and their conjugates in T') generate x(Cone, I') (and in fact, generate it
freely). In particular, if X = H? x H?, then x\(Cony I') is an uncountably
generated (free) group and this remains true whenever rank X = 2. On
the other hand, if X = H? x ... x H? for n > 3, then 7, (Con,I') = 0 as

follows from (€) and (f) in 2.B, but x,_1(T') # 0 (in fact, it is uncountably
generated). It seems, in general, that if rank X = n and rankqT =1 then
7 (Cong X) =0 fori=0,1,..., n —2and 7.y (Cong, X) is uncountable.

3.H,. Exponentially Lipschitz retraction X — X,. There is an obvious
such retraction, coming from the normal projection of X to the (horospher-
ical) boundary X, C Xp. It follows that T' is an exponential retract in X
and thus satisfies the exponential isoperimetric inequalities. (In fact, I’ has
the same isoperimetric profile as the boundary horospheres. For example,
for X = H? x H? the horosphere is 3 and has exponential isoperimetric
(Dehn)function according to [Ger]y 3,46; hence, the isoperimetric (Dehn)func-
tion of T is also exponential in this case.)

3.1. Arithmetic groups of Q-rank > 2. Let T be an irreducible lattice in
a scmi-simple Lie group (G without compact factors and with rankg G > 2.
Then T is arithmetic by the Margulis theorem, the Q-rank of I' makes sense
and we are now interested in the case where it is > 2 (as the case rankg ' =1
has already been studied). First, we look at the quotient space W = G/T’
and we express in geometric terms the basic facts of the standard reduction
theory.

3.I,. There exists a unique asymptotic cone C == Con,, W which, in fact, is
an actual cone over a finite simplicial polyhedron, and

dim C = rankgT.

Furthermore, C ol W, i.e. W lies within finite Hausdorfl distance from C.
(Actually, C is built of Weyl chambers associated to the maximal Q-split
torus in the @-group corresponding to T'.)

Eramples. (a) If rankg [ = 1, then C consists of finitely many rays Ry joint
at zero. (These rays correspond to different cusps of W.)

{(b)Let T = SL,Z C SL,R. Then W is the space of unimodular lattices in R™.
Denote by A C W the (sub)set consisting of the lattices spanned by certain
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multiples of the basis in R™, namely by (A,,0,0,...,0), (0,),,0,...,0), ..
(0,0,...,An), such that

“

0< A< <

and A\jAz...A, = 1. This Aisa netin W and the geometry of A in the induced
metric is (essentially) conical. To see this gecometry we use the logarithmic
coordinates in A, that are £ = log\; which embed A onto a cone (Weyl

chamber) in the hyperplane }‘: ¢ =0in R".
=1

(b’) Let I' C T = SLnZ be a subgroup of finite index. Then W’ = SL,R/T
appears as a finite covering of W and A C W lifts to a union A of finitely
many copies of A in W'. Then Con,, W' = Cong, A which is a simplicial
cone built of several copies of A (see [Hat] for a better description).

3.1,. There exists a smooth function f: W — R, such that

(a) f(w) is equivalent to the distance function dist(wo,w) for w — oo and
a fized point wo € W (recall, that “equivalent” means a uniform bound
on f~1dist and f(dist)™! as w — oo0).

(b) The gradient of f is bounded from below outside a compact subset Wy C
W,ie. | grad f(w)]| > e >0 forw € W - W,.

(c) The Hessian of f is bounded, which means a uniform bound on first and
second (covariant) derivatives of f.

Idea of the proof. We shall work in the symmetric space X = G/maximal
compact subgroup and in the corresponding space, V = X/T (we always
write the quotient on the right). Notice that V is a manifold if I' has no
torsion and an orbifold otherwise. We construct our function on V rather
than on W (which makes no essential difference) by patching together several
horofunctions. Recall that a horofunction (or Busemann function) A associ-
ated to a geodesic ray r = r(t) in a Riemannian manifold Y, i.e. an isometric
embedding r : Ry — Y, is defined by

h(y) =lim dist (y,7(¢)) - L.

(The existence of the limit is obvious. Also notice that h(y) = dist(r(0),y)
for y = r(t).)

Now we take the rays in the cone Cony, V = Cong, W issuing from the ori-
gin and meeting the base B of the cone in the vertices of some simplicial
“subdivision of B. (Recall that B is a simplicial complex; the subdivision we
need must be sufficiently fine but, in fact, the barycentric subdivision will
do.) Then we take geodesic rays, say ri,s = 1,...,k (where k is the number
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of the vertices in our subdivision of B) in V lying within finite (Hausdorff)
distance from the rays in Cony, V. (To avoid undue complications one may
assume V is a manifold.) We denote by h; the horofunctions attached to r;
and set

fo(v) = min, (~hi(v)).

The function fo is not smooth but it has nice corners. To smooth the corners,
we lift fo to X and smooth this lift using a smoothing operator with a smooth
kernel of the form S((dist(zl, z;))’) where 5(d) is a smooth positive function
in d > 0 supported in a small interval [0,&| C [0, 00). The smoothed function,
say f on X, descends to the required function on V. (In fact, instead of
working on V' we could use I'-invariant functions on X.)

Corollary. There exists a compact submanifold (core) Wy C W (or subord-
ifold Vo C V, if you wish), which is homotopy retract in W. Moreover, W, is
an ezponentially Lipschitz retract in W,

Proof. Take Wo = f~1]0,to) for large enough t, € Ry. As f has no critical
point at infinity, W contracts to Wp. In fact, (a), (b) and (c) show that
the gradient flow delivers the exponentially Lipschitz retraction we want.
Moreover we get a I'-equivariant retraction of X to X, C X covering V.

3.I,. Corollary. An irreducible lattice I' in a semi-simple Lie group G
satisfies exponential isoperimetric inequalities in all dimensions.

Remark. This answers a question pointed out to me by Steve Gersten who
proved the above for ' = SL,Z (see [Ger); 3,4,6)-

Question. Let T be the fundamental group of a complete manifold V without
boundary, such that —oo < —¢ < K(V) < 0and Vol V < 0o. One knows that
I'is finitely generated in many cases, e.g. if K < 0 (see [Gro]; and [B-G-S])
but an exponentially Lipschitz retraction (on the large scale) of V — I" seems
hard to get. Yet one may expect such a retraction with a suitable perturbation
of the original metric in V and also the exponential isoperimetric inequalities
for [ appear plausible.

3.I;. Kazhdan’s question. For lattices ' C G as above D. Kazhdan
conjectured several years ago that they have bounded distortion in G. (We
confirmed this conjecture for 1 = rankg " < rankg &G in 3.H.)

The conjecture implies that every parabolic element v € T is algebraically
parabolic in T which means, by definition, strict exponential distortion of the
cyclic groups {7'} in T, i.e. |7*| <log i. In particular, T should always contain
algebraic parabolics. The latter conclusion seems easy to prove independently.
For example, SL,Z, n > 3, contains the (obvious) semi-direct product TV
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of Z°! by SL._, Z where all ¥ coming from Z*~' are algebraic parabolic,
(Similar subgroups I seem to sit inside all our groups I'.)

A natural approach to Kazhdan’s problem is as follows. First show that the
relevant horospheres in X are undistorted (this part is easy) and then prove
the same for the region Xo C X bounded by horospheres, where Xo/T i
compact. (The difficulty resides in the intersections between the horospheres
in 38X, which do not appear for rankqI' = 1.)

3.I. If Kazhdan's conjecture is true, then Con,, I' embeds into a k-dimen-
sional space Cone, G for k = rankg G and then one can easily show that

dimCon, ' = k.

Probably, Con,, I' is non-contractible.

Finally notice that the first open case for Kazhdan’s conjecture is T = SL,Z,
(The conjecture was recently settled by Raghunathan for SL,Z,n > 6.)

3.L,. P-adic remark. All we have said applies to lattices in p-adic algebraic
groups where the (expected) situation is similar to the real case and the proofs
should be even easier.

3.J. On distortion of discrete linear groups I" which are not lattices.
Discrete subgroups T' C GL, of geometric origin (seem to) have at most
exponential distortion. The simplest example of actual exponential distortion
is ' = {4'} where X is parabolic. A more interesting picture emerges for
totally degenerate Kleinian groups but it seems unknown if they all have at
most exponential distortion. (This is clear for the Jorgensen example of an
exponentially distorted surface group I' inside a cocompact lattice in SL,C.)
In general, the distortion tends to increase when we go to the boundary of
the space of discrete faithful representations I' = GL,, but nothing specific
is known in this regard. Here one may try first to understand the distortion
of free subgroups I'. (The most sophisticated geometric example up to date is
due to Margulis, see [Mar]g; this is a free group F, discretely acting on R? by
affine transformations, but it does not show much distortion in G = A R®
as was explained to me by Bill Goldman.)

Michailova’s groups. Let some group I be generated by k-elements, p :
F, — I be the corresponding surjective homomorphism and I' = Arr C
F). x Fi be the pull-back of the diagonal subgroup {#',¥'} C I x I under the
homomorphism pxp : Fy xF; — I x Y. If I" admits a finite presentation, say
{Z1,-- 2Tk | Wi, ..., w), then I' is finitely generated. In fact, it is generated
by (2i,z:), t = 1,...,k, and (id,w;), j = 1,...,¢, (see §4 of chapter IV in
{Ly-Schj).
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Now it is clear that the distortion of T in Fi x Fy is of the order of the
complexity of the word problem in I", since v = v in IV if and only if (u,v)
is contained in T' (compare [Pit]). In particular, if the word problem in IV
is unsolvable, the group T' is unrecursively badly distorted in F. x Fi and
hence in every linear group G containing Fy x Fi (eg. G = SL; x S,
or G = SL4). Notice that by taking groups I with a given (interesting)
behaviour of the isoperimetric (filling) function FoA(£) (see §5) one obtains I
with the distortion of the same order of growth as FoA(), for £ — oo. This T
is practically never free as with every element (id, w) it contains (w,id) which
commutes with (id, w) (this was pointed out to me by Misha Kapovich) and
it is unclear when ' can be made non-discrete in G D I' by an arbitrarily
small deformation. (An interesting case bere is where I is a standard group
with the unsolvable word problem.)

More questions. Which Lie groups G contain strongly distorted (free) discrete
subgroups? The picture scems clear for G = SL;R (no such subgroup) but
already G = SL;C and G = SL;R look mysterious. (Of course, SL3R is
more likely to contain a strongly distorted I’ than SL,C.)

3.K. Further examples of strongly distorted subgroups. We have
already met the group T' = (a, b | a® = a?) and observed that a is an algebraic
parabolic. In fact the minimal word length of a?” (in the letters a and b)
obviously satisfies |a®"| < 2n 4 1. Moreover, since (a™)® = a®™ for all m =
1, 2,..., the length function £(m) = |a™| satisfies £(2m) < €(m) + 2, which
implies £(m) < const log m for all m.

3K,. Next, we take T' = (a,b,¢ | @ = a? b = b?). Now the function
{(m) == |a™| obviously satisfies

é(m) <4n +3 for m = 27",
which makes the distortion double ezponential. (Notice, that the relation
£(m) = |a™| < loglogm
cannot hold for all m as tbis would give us a more than exponential number
of points in the balls in I'.)
8K, Let ' = (a,b,c | a® = a? a° = b). Since al*”) = a?", the length
function £(m) = |a™| satisfies
{2") < 2(n) + 5,

which makes the distortion (of the cyclic subgroup {a‘} C T) to be more
than multi-exponential. (Notice that all action takes place in the subgroup
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I’ = (a,c | @*° = a®) which was brought into geometric focus by S. Gersten
along with the groups ') = (a,c | a** = a?) for v, = a*, w; = a*’, etc., see
(Gethaue.)

3.K;. Non-recursive distortion. Take a positive integer M and two finite
sets of 4-tuples of positive integers (i,,j,, k., &) and (i}, 3, K,,8,), v =1,..
n. Then consider the group I generated by z, y, 2z, t,, 5,, ¥ =1,...,n with
the relations

M = oM bt = ey M =y v =1,

and

M

- ?
s,zMas! = M

, 8,2y s = oy, s yMis = yM, v =1,...n,
and take the subgroup 'y C I generated by z, ¢, and s,. One knows (see
p.p. 49-52 in [Stil]) that for a certain choice of our M, 1,, j., etc., the
subgroup Ty is free and the Magnus problem for Ty (of inclusion of v € T to
To) is unsolvable. Moreover, there are infinitely many positive integers 1, j,
such that z*zy* € I’y and the word length of these elements in I’y cannot be
majorized by any recursive function. Thus Iy C I' has non-recursively large
distortion.

3.K;. Let us augment the above I' in order to have an Abelian strongly
distorted subgroup. For this purpose we take a faithful action A of the above
free group I'p on Z x Z, and add to I" two extra generators a and b with the
relations [a,b} = 1 and

zaz”' = Ay(a), zbz7' = A,(D),
tat;! = A, (a), bt = A, (b),
s,av' = A, (a), s,bs]! = A, (b).

Then, clearly, Z x Z is (at least) as strongly distorted in the augmented I" as
Tp in I. Moreover, the cyclic subgronps of Z x Z are distorted as badly as all
of Z x 2.

3.K{. Rips’ example. According to I. Rips (see [Rip]) there is a hyperbolic
small cancellation group I" with a finitely generated normal subgroup T'p C T,
such that the word problem for I'/T is unsolvable (this was pointed out te
me by Z. Sela). Then, obviously, the distortion of ['y C T' is non-recursively
large.

Remark. It might be possible to modify Rips’ example in order to have such
a T appearing as the fundamental group of a closed manifold V' with K < 0.
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(May be one should allow singular metrics with K < 0.) But it is hard to
imagine such a I' = x(V) for closed manifolds V with constant negative
curvature. (But look at Michailova’s groups!)

3.K,.. Realization problem. Let {(:), ¢ € Z, be a symmetric subadditive
function, i.e. £(i) = &(—i) and &(i + 7) < £(i) + £(j). When can one find an
embedding of Z into a finitely presented (or, at least, finitely generated) group
T, such that the word length in T' D Z restricts to our € on Z? (Of course,
the equality lengthr|Z = £ is too much to ask. A more realistic demand is
some kind of equivalence of lengthy|Z to a given £.) For example, may one
realize in some T a function £(z) ~ i* for an irrational a?

Remark. The function [(f) = length(i) for a badly distorted embedding Z C
I' looks similar to a Kolmogorov’s complexity function, which is the length of
the shortest formula in a given formal language expressing the number i. As
(one knows) there are groups with prescribed degrees of (non)-solvability of
the word problem, one expects that the Kolmogorov complexities for various
languages can be approximately (in a suitable sense) realized hy embeddings
of Z into finitely presented groups.

3.L. Distortion in free groups. Let I' be the free group on k-generators
and ['o C T a fiuitely generated subgroup. Then Ty has bounded distortion in
T and, moreover, there is a I'g-equivariant Lipschitz retraction T' — Ty. To
see this we make T the fundamental group of a finite graph V and let V — V
be the covering graph corresponding to I'p. Then V (obviously) contains a
unique minimal connected subgraph, the core V* of ¥, such that the inclusion
V* C V induces an isomorphism on x,. This V*, clearly, is a finite graph
whose complement ¥V — V* (corona) consists of finitely many infinite trees
growing from certain vertices of V*, see Fig. 7.

Then one may retract ¥ — V" by sending each tree to its “root” in V*.

Q.ED.

3.L'. Remarks. (a) Notice, that if a free group or a Cartesian product [, of
such groups has bounded distortion in an ambient group I, then there always
exists a Lipschitz retraction T — I’y but the l'p-invariance is not insured by
the general priuciples.

(b) The above retraction property for subgroups in the free groups (obviously)
generalizes to subgroups in the surface groups as everybody (in the theory of
Fuchsian groups) knows.

3.L". Let us give an estimate on the (bounded) distortion of I'y C I in terms
of the word lengtbs of the generators of I'y. We denote by L the sum of their
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Fig. 7

lengths and we claim that

lengthyy < Cllengthy, v €T, (+)

where lengthy denotes the word length of elements in I, with respect to the
given generators in [y and where C is some constant depending on k, the
number of generators of I'. Let V = V(I') be the standard graph (consisting
of k loops joint at a single vertex) presenting I’ and let Vo = V(Io) be the
corresponding graph (consisting of the loops corresponding to the generators
of To) for To. The inclusion 'y C I' and the resulting presentation of the
generators of I'p by some words in T, induces a map V, — V which, in turn,
induces a subdivison of Vp, say Vj, for which our map is a graph morphism,
i.e. every edge of V; goes onto an edge in V by a homeomorphism or it goes to
a single point. Then, this morphism, call it f : V§ — V,, can be decomposed
(by a trivial argument) into morphisms of very special types,

vavivo.oyh

where f; is locally injective (i.e. injective on a neighbourhood of each vertexin
V!) and where every f;, ¢ < k, is a surjective map which is “almost injective”
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in the following sense: V. is obtained from V by one of the following two
elementary operations,

(1) identifying two edges issuing from the same vertex,

(2) collapsing a loop consisting of a single edge to the (unique) vertex on

this loop.

In both cases we take the quotient map V) — V,, for f..

Obvious lemma. For every simple loop  in V/,, and a vertez v € £ (for a
base point) there exists a loop € in V! with a vertez (base point) v € £, such
that fi(v) = v and the loop f;: L — V|, is homotopic with the base v to the

loop £, and such that -
length € < 3 length £. (+)

Remark. The inequality (+) becomes an equality for the map sketched in

Fig. 8.
<> — O
v

v
Fig. 8

It follows that the composed map Vj — V| contracts the lengths by at most
3*, while the (locally injective!) map f; does not contract at all. Then ()
easily follows.

Isodiametric remark. The above argument is similar to that of Gersten and
Cohen (see [Ger)g) concerning the isodiametric functions of (non-free!) groups
I', where one uses Nielsen moves in a free group rather than a (similar)
clementary operation on graphs ({1) and (2) above).

Our inequality (*) shows (together with the discussion in [Ger]s) that the
isoperimetric and isodiametric functious of every finitely generated group I’
are related by the following inequality slightly sharpening that in {Ger]g,

Isop < expexp C(lsodiam)
for some constant C = Cr. (In the notations of our §5 one should write

FoA(l) < expexp (CFoD(€)),
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where FyA refers to “filling area” and FyD to “filling diameter™.)

Remarks on (%) for non-free groups. Our inequality (+) measuring the distor.
tion of 'y C T in terms of the length of given generators of Ty makes sense
any time when the distortion of I'p in T is known, a priori, to be bounded.
(We suggest to the reader to work out the cases I' = Z™ and I' equal the
Heisenberg group where 'y does not contain the center. Also one may pon-
der on free products of such groups.) An especially interesting case is [y =T
where we ask the following

Question. Fix a finite generating set for I' and let A({) be the minimal integer
A (depending on £ = 1,2,...,) such that for every system of (new) genera-
tors of T consisting of words of total length < £ each element in the original
generating set can be decomposed into the product of at most A new genera.
tors. What we want to know is the asymptotic behavior of A(€), £ — oo, for
specific groups I'. (We have seen that A({) < exp? for free groups and it is
obvious with Euclidean algorithm that A(€) ~ £ for T = Z.)
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4. Topology of Balls

Topology of balls B(R) C X for R — oo and connectedness radii Ri(r).

Imagine we have a contractible metric space X and we look at the concentric
balls in X with a fixed center. These balls are not necessarily contractible.
For example, one may easily have a non-contractible loop v in such a (large)
ball, say B(r) C X, which remains non-contractible in the larger balls B(r) >
B(r) unless we reach a certain value R > r and then v does contract in all
B(R’) D B(r) for R’ > R. This picture extends to discrete (and highly non-
contractible in the conventional sense) spaces such as discrete groups T, if
these are contractible (or at least sufficiently connected) on the large scale,
i.e. if there are sufficiently connected thickenings of I' (see §1).

We are interested here in groups I' endowed with word metrics or more general
[-invariant metrics, essentially those which are induced from the word metrics
of certain extensions IV O . If we have our T k-connected on the large scale
we define the connectivity radius (function) Ry(r) as follows. Take some k-
connected (and hence untformly k-connected, sec §1) thickening X O T, and
let Bx(r) be the minimal (or infimal) radius R > r of the ball B(R) C X
around id € I' C X, such that the inclusion B(r) C B(R) is k-connected
(i.e. every continuous map of a k-dimensional polyhedron to B(r) contracts
in B(R)). In what follows we only care for the function Ri(r) up to equiv-
alence (where R ~ R if R/R' and R'/R remain bounded for R — oo), and
we observe that the equivalence class of Ki (obviously) is a quasi-isometry
invariant of T

For many groups coming from geometry the invariants Ry (r) are trivial which
here means linear, i.e. < constr (and thus ~ r). For example, this is the
case for hyperbolic and semi-hyperbolic groups (whichever “semi”-definition is
used). Also combable groups in the sense of [E-C-H-P-T} have trivial K (this
is unclear for Gersten combable) as well as the finitely generated nilpotent
groups. (This is easy to show.) In fact this is, probably, true for all connected
Lie groups with left invariant Riemannian metrics as well as with the metrics
induced from larger Lie groups. Also this seems likely for the (non-uniform)
lattices in the connected Lie groups, as well as in the p-adic groups.
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4.A. Examples of groups I with non-trivial Ry(r). Every group T with
a word metric obviously has Ro(r) ~ r which is seen with the Cayley graph
thickening T' where the balls are connected. To have something interesting
to look at, we take a subgroup I' in another finitely generated group IV D T
such that the distortion of I in I is unbounded.

4.A;. Observation. If the distortion of T' in I" is superezponential, i.e. if
the ratio
log distr / distp IF

is unbounded (as a function on T x T minus the diagonal) then the function
Ro(r) for (T, distrs, T) grows faster than any linear function Cr.

Proof. Suppose we have a subset B C T such that

(a) B 3 id and also B contains some 7y € T, whose word length in [ is > R,
for some R > 0,

(b) B is contained in a single connected component of some d-thickening
T2 O T of T (“d-thickening” means that T is a d-net in Ty, compare §1).

Then, obviously, B contains at least R/2d + 1 points. In particular, if the
distr-ball B = B'(r) C T is connected in Ty, then diamr B'(r) < expCr,
since the ambient distr.-ball in [ of radius r has at most exp Cr elements.
Thus the superexponential distortion of I' C I, i.e. the existence of an infinite
sequence of y; € B'(r;), ri — oo, such that distp(id, r;) > exp ¢ for & — ox,
implies the discontractedness of the balls B/(r;) C I' on every (fixed large)
scale d. Q.E.D.

4.A;. Question. Suppose the distortion of I' in T is (at most) exponential.
Does it follow that Ry(r) for (T, distr I') grows linearly? The first casc to look
at is IV which is a semi-direct product of T with Z for some automorphism
A:I'=T.

4.A;. Recall (see §3) our examples of I' = Z having superexponential distor-
tioninI">O T,

(a) I' = (a,b,¢c,| a® = a?, b° = b?); here the (infinite cyclic) subgroup ' =
{a'} has double exponential distortion, as the powers a” for p; = 2% grow
linearly in I". It follows that Ry(r) 2 expr and it is easy to show that,

in fact, Ro(r) grows exponentially. (To do this, one first shows tbat for
I C I = (a,b|a® = a?) the function R grows linearly.)

(b) Let us give an example of a quadratic function Ro(r). For this we take

IY = (a,b,¢c,d | [a,}] = ¢, [a,d] = [b,c) = 1, & = ¢*)
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and T' = {d'). Here the distortion is ~ expr? and Ro(r) grows as r?.

(c) We have constructed in §3 (cyclic) subgroups witb non-recursively fast
growing distortion and then we have Ro(r) of similar growth.

4.B. Remarks on the geometry and topology of I"-balls in I C I,
The connectedness radius B of I' does not tell us the whole story about the
distr-balls B’(r) C T, not even about the connectedness features of these
balls. An obvious additional invariant to look at is the number of the con-
nected component of B'(r) on a fixed large scale. (In the examples of 4.A;
this number could be easily seen to be 2r, but I have not looked further.)
The above number of components is, of course, a function of r. In fact, one
should look at the homology group Ho(B'(r)) as it goes to Ho(B'(R)) for
R > r. Then one has a function in {wo variables r and R, namely the rank of
the inclusion homomorphism Ho( B'(r)) — Ho(B'(R)), and a similar invariant
(refining Ri(r) is defined for all k=0, 1,2, ...).

4.B,. The case I' = Z C I’. Here the ball B(r) looks roughly as a union
of disjoint intervals. The distribution of the lengths of these intervals (i.e.
the “connected components” in B'(r) C Z) as well as in tbe complement
Z - B'(r) appears an interesting object to look at, but I have not worked out
any serious example.

In order to get an overall geometric view on B/(r) C Z one may rescale such
a ball (or the intersection of B'(r) with an interval [m,n] C B'(r) for certain
m = m(r) and n = n(r)) to the unit size and go to the limit for r — oo. Then
one may hope to have in the limit a kind of a Cautor set in [0,1] featuring
the asymptotic geometry of B(r). Unfortunately this does not work in those
cases, where the gaps in B(r) (or in B(r) N [m,n]) are much smaller than
Diam B(r), as the limit becomes equal to the whole interval [01]. Then one
should try something more sophisticated than the lincar rescaling in otder to
catch the large-scale geometry of B(r).

A geometric approach to B'(r) may be fruitful for Z = I' C I with relatively
small (say, at most double exponential) distortion but for the large distortion
the naive geometry of B(r) C Z for the ordinary metric in Z appears rather
irrelevant. To make our point clear we look at the integers as they appear to
a logician operating with a fixed formal language £. Now the ball B¢(r) C Z
consists of the intcgers representable by formulas of length < r in £ {(compare
3.K,). Such a ball, for every large r, is highly disconnected, and looks as a
Cantor set rather than a solid array of numbers from 0 to n which appears in
the idealized (and illogical) counting process 1, 2, 3, ..., n. (Try to fill in the
dots by numbers for n = (2‘“’)!) At the first glance this ball has certain pro-
nounced geometric features. For example, it looks geometrically very much
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the same near each of its points because the Kolmogorov complexity is essen-
tially sub-additive (if we use the addition sign in our language). But then we
realize that the same is true for the set {logi}, i € B(r), and moreover, for
{7()} for a wide claas of (recursive) functions f. In other words the essentia]
features of B(r) survive very general transformations (corresponding, for ex-
ample, to changes of the language) which completely destroy naive geometric
patterns. This suggests an approach to the geometry of B¢(r) (and the balls
in the subgroups with large distortion) in the spirit of the computational
complexity theory.

4.C. Large R,. Here we are concerned with finitely generated groups (T,
word metric) and we want to show that the contractibility radius Ri(r) (=
the minimal R such that every loop in the r-ball of the universal covering of
the 2-polyhedron presenting I is contractible in the concentric R-ball) may
display essentially the same features as Ro(r) for the induced metric distp: |
for IY O T. For example, the following simple proposition suggests a variety
of examples of groups with non-trivial (i.e. faster than linear) function R)(r).

4.C,. Gluing property. Take two copies of (', T CI") andlet T} =" » T
be the amalgamated product. Then the function R,(r) for T is minorized by
Ry(r) for (T, distr+ |T).

Proof. The polyhedron P, presenting 'y is obtained by gluing two copies of P/
across P presenting I' and then the universal covering P, is glued of infinitely
many copies of P’. Then we observe that if a space X; is obtained by gluing
two copies of X’ across X C X', then the fundamental group m,(X,) comes
from 7,(X) and the relative m; of the pair (X', X), which is, in turn, related
to g of (the balls in) X. (This is the usual additivity of Van Kampen-Mayer-
Vietoris.) In particular By for (X, distxs X) minorizes R, for X;. We leave
the details to the reader, who may gain some geornetric insight by looking at
the following

Ezample. Take R? for X’ and let X C R? be the graph of the function
y = p(z) sinz for a fast growing positive function p(z). Then the intersections
of X with the r-balls around 0 € R? are highly disconnected and when we
glue two copies of R? along X the resulting space X, has highly non-simply
connected balls around a fixed point in Xj.

4.C;. Remarks. (a) The gluing property extends to the general case of
IY #r T (and X’ glued to X" # X' across X) if one properly takes into
account the discrepancy between the metrics dist’ and dist” on T (or on X).

(b) The 1-dimensional homology enjoys the same gluing property as x, and
we can minorize not only the connectivity radius of I'y (concerning x, of the
balls) but also the acyelicity radius (measuring H,, see 4.C4) by Rgfor T C T,
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(c) Our gluing property is similar to those proved by S. Gersten for the
isoperimetric and isodiametric functions.

4.C,. R, for aspherical 2-polyhedra (Gersten lemma). Let P be an
acyclic (e.g. aspherical) 2-dimensional polyhedron (which appears in our ap-
plications as the universal cover of some P presenting a group I'). Suppose
we have a disk D embedded into P with the boundary circle S in P. We
claim (this is a slight modification of an argument in [Ger];) that S does not
bound any other disk D' meapped into P with

diam D’ < diam D, (+)

where “diam” means the “diameter” of the image in P. Indeed we can think
of the disks in P as 2-chains and take the difference C = D — D’. Since
gD =D = S, this C is a 2-cycle in P and since P is acyclic of dimension 2
the cycle C is identically zero. It follows that D' O D, because D is embedded
into P and so equals the support of the chain it represents.

We shall use the above when we have a sequence of circles S; = @D;, such
that R; = Diam D; is much greater than r; = diam S;, r; — oo, which gives
us a non-trivial bound

Ri(r) 2 R

4.C,. Remarks. (a) The above discussion becomes more logical and the
conclusion more general if we work directly with chains in P rather than with
disks and relate the diameters of the supports of our chains by the inequality
(*). 1n this case our final conclusion is a lower bound on the acyclicity radius
of P, denoted H Ry(r), and defined as the minimal R for which the inclusion
homology homomorphism H,(B(r)) — H,(B(R)) vanishes.

(b) In order to make full use of disks (not just corresponding chains) one
should (following Gersten) allow Cockcroft 2-complezes, where the Hurewicz
homomorphism from x; to H; vanishes. Important examples of groups [ =
x(P) with P Cockeroft are the fundamental groups of oriented 3-manifolds
see [Ger].,z_;,‘.'a).

4.C;. Ezamples. (a) We have met in 4.A. various examples of I' C [V with
large Ro. Now we amalgamate and obtain groups I'' with large R,. (It
seems that in many concrete cases the minoration of Ky by Ry is essentially
sharp and thus we may obtain a rather precise evaluation of R, for some I';.)
In particular, we may have I'; where R;(r) grows faster than any recursive
function.

(a’) Remark. It scems, the standard groups T with non-solvable word problem
have R,(r) growing faster than recursive. Yet it is unclear if every group with
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unsolvable word problem has such El . One can imagine a [, where the balls
B(r), r=1, 2..., in the covering P of P presenting I (i.e. #,(P) =T) are
all simply connected, but the decision problem

n(B(r)=1,r=1,23,..,

is unsolvable. It is even conceivable, that for certain I' every finite polyhedron
(up to some reasonable equivalence relation) appears in a ball like shape inside
P. (Such a possibility was apparently overlooked in the discussion on p. 43 in
[Grojio.) On the other hand, if the word problem is solvable in T, then l—h(r)
is subrecursive because it can be (obviously) majorized by the isodiametric
function (see [Gerjs, and §9 in {E-C-H-P-T]).

(b) Let us evaluate R, for the group (a,d,c | a® = a2, b* = b?). We already
know, that the relation a® = a? can be (roughly) represented by a (large) semi-
disk in the hyperbolic plane, with the diameter B and the arc A ~ exp B.
Then we take the second disk, now with the diameter C and the arc B.
Gluing them together along B we get a new disk, say D, with the boundary
consisting of two arcs of the lengths C' and A ~ expexp C, see Fig. 9.

A
A
B
B Cc C
Fig. 9

Then we take two copies of D and glue them across the A-arc. Thus we get
a topological disk D, bounded by a 2C-circle, see Fig. 10.

It is not hard to see that the distance from the 2C-circle to the center z of the
A-arc in D, is about exp C. On the other hand every disk Dy = Dy (C),C > 0,
quasi-isometrically embeds into the universal covering £ of the polyhedron P
Rmentmg our I (this is easy to show, compare [Ger]s). Since the polyhedron
P is contractible, it has Hy(P) = 0 and so the boundary circle § C P of
the image of Dy in P which we still denote D, C P does not bound in the
complement P — {z}. (If § were a boundary of some chain € in P — {z}, we
would have a non-trivial cycle in P, namely C — D, see 4.C; and [Ger)16.)
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Fig. 10

Thus we see that B, (r)2expr and then it is not hard to see that, in fact, Bi(r)
grows exponentially for our T. This slightly improves the lower exponential
estimate by J. Gersten for the isodiamctric function of T, (see [Gerlg); recall
that B, minorizes the isodiametric function.

{c) The above discussion easily generalizes to the groups

a 2 _ .2 a _ .2
Ty = (ao,a1,az,...,8; | af* = ag, a}* = a7, ...,a}", = ai_,).
Thus one concludes that R, (r) for T, grows as expexp...exp r.
N——
k-1

('} Take T = {ao, b | a33 = a3) and observe (following Gersten, see [Ger); ¢),
that I' contains
oo = {a;, i€ Z|a]** = a’),

as a normal subgroup for b acting on I'y;, by
@} =aip, i €Z.

Then we take the (obvious) 2-polyhedron P, corresponding to the above
presentation of [, with the 1-skeleton indicated in Fig. 11.

This P, is freely acted upon by Z and the quotient polyhedron P = P /Z
presents T'. It follows that R, for I' grows faster than R, for each of I'y C oo
and so R, for T grows faster than any iterated exponential function. (In fact,
the same lower bound is valid for the acyclicity radius H R,(r) of T".)

4.D. Questions concerning R(r) for k > 2. There is little doubt that
there exist groups ' with arbitrarily fast growing R for every given k > 2, but
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00000

Fig. 11

I have not worked out any specific example. The first class of groups to look
at are ' = m(Q) for compact 3-dimensional aspherical polyhedra Q. One
obtains many such Q by starting, say with Ty = Z xZ x Z, and then applying
the HN N-extension to Abelian subgroups of rank two in Iy thus obtaining
I D I'. Next, HNN applies to Abelian subgroups in I’y which gives us
I3 DT, and so on. One wonders if among such groups [; DI, O ... DT,
some have large Ry(r).

There is an essential difference between the case k¥ = 1 and k > 2: every
finitely presented group is 1-connected on the large scale but it is not neces-
sarily k-connected for k > 2 and so the invariants Ry, k > 2, may be not even
defined for certain I'. In this case several modifications of Rk(r) are possible.
For example, one may restrict to those k-spheres (in the r-ball of some thick-
ening of I') which are a priori contractible in a suitable fixed thickening of T'.
A more general approach is to define the following function in two variables,
Ri(r,d) the minimal radius of the ball in some d-thickening where the sphere
in question becomes contractible. (Recall that the number d of a thickening
X DT refers to the Hausdorff distance from X to ')
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5. Filling Invariants

Filling invariants of closed curves: isoperimetric and isodiametric functions
etc.; area filling in nilpotent and solvable groups; filling length, filling radius
and Morse landscape; filling in k-dimensional cycles for k > 2; filling on the
large scale and volume distortion of subspaces.

Given a circle S in a Riemannian manifold X (this S may have double points)
there is a variety of invariants characterizing the optimal (i.e. minimal) size
of surfaces in X filling in S i.e. having S for their boundary. Here are some
of them,

1. Filling area, denoted Fill Area S. This is the infimal area of compact sur-
faces (or better to say of 2-chains D in X, filling in S. (Here one should
specify the implied coefficient field. Usually we speak of chains with integral
coefficients.)

IL Filling area of genus g, denoted Fill, Area S, where the infimum of area
is taken over the surfaces of genus g filling in S (If we insist on Z-coefficient
these surfaces must be orientable.) Notice, that here and in future “surface”
means a surface which is Lipschitz mapped into X, where the map is by no
means required to be one-to-one.

A particularly important special case is that of Fill; Area S where the implied
surface is a disk.

IIL. Filling diameter Filly Diam S. This is the infimal diameter of disks D with
some Riemannian metrics for which there are 1-Lipschitz (i.e. contracting)
maps D — X sending the boundary onto S with degree 1.

IV. Filling Radius FillRad S. This is the minimal number R, such that §
bounds (i.e. homologous to zero) in the R-neighbourhood Ug(S) C X.

V. Filling length Filly Leng S. This is the minimal number L such that S can
be contracted to a point by a homotopy of closed curves of length < L.

V1. Filling Span Fill Span. This is the minimal A > 0 such that there exists
a A-Lipschitz map of the unit disk into X such that the boundary of the disk
goes onto S with degree one.
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Remark. One can continue this list indefinitely. In fact, every monotone
invariant defined in the space of metrics on the disk (and on a surface of
genus g > 0) gives us, via 1-Lipschitz maps to X, an invariant of §. (We
have chosen the above five for the sheer geometric beauty; also they proved
useful in certain situations.)

Now, with every filling invariant, say F(S) we associate the “filling func-
tion” F(¢), £ € R,, which is the supremum of F(S) over all curves S in
X of length < £. For the above five invariants we use the abbreviations
FA(Y), F,A(¢), FD(f), FR(£), FRL(¢), and FS(Z). In what follows we fo-
cus our attention on infinite groups I' with X appearing as some thickening
of I'. In fact we may use as earlier a simply connected 2-polyhedron P (for
X) where I acts freely and cocompactly. (Never mind that P is not quite a
manifold.)

5.A. Isoperimetric (Dehn) functions FA and FoA. Our FyA(f) is what
Gersten calls Dehn function. He gives a comprehensive account on FpA (sce
[Gerjg in this volume). The few comments we add below are stimmlated by
the questions put out to me by Gersten during the meeting.

5.A;. Upper bounds on FyA: General remarks. To have such a bound
we need, in general, a specific construction of a surface of “small” area filling
in § C X. In rare cases (e.g. if K(X) < 0) one can also use the variational
approach, i.e. take some minimal surface M with boundary S and then es-
tablish an upper bound on Area (M) by analyzing the geometry of M in the
“infinitesimal neighbourhood™ of M in X, where the minimality of M can
be effectively used. A somewhat similar situation arises in the case where
dim X = 2 and H3(X) = 0. Here every S" bounds a unique surface (or rather
a chain, see 4.C;) and the only problem is to evaluate the area of this sur-
face. This has been done by Gersten (see [Ger)s and references therein) for a
variety of groups I' with aspherical (and Cockcroft) presentations.

5.A,. Filling area in nilpotent groups. Let X be a simply connected
nilpotent Lie group. We already know that FyA(€) < £ in this case because
of the “polynomial similarity” between X and R?, n = dimX (see 3.Bs;
notice that the polynomial bound on FyA for nilpotent groups was originally
established by Gersten in a more algebraic vein). Recall, that the polynomial
similarity comes along with the exponential map of R® = Lie X to X and
so the actual filling of a given § C X is obtained by taking the cone of
one-parameter subgroups over S. Here, to control the area, we need id € S
(which we can assume) and then the filling cone is made out of the segments
of one-parameter subgroups terminating on S. It is obvious that the area of
this cone is bounded by const(¢* + 1) for £ = length S and some number
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a < ag(n) which can be explicitly evaluated in terms of the Lie algebra of X.
(We suggest to the reader to actually make this evaluation. We do not do it
ourselves since this does not, in general, lead to the best bound on FpA.)

5.A,. Filling in homogeneous groups. A nilpotent group X is called ho-
mogeneous if the Lie algebra L of X admits a grading. In this case there exists
a semi-simple automorphism a : L — L where all eigenvalues have absolute
values < 1. It follows that X admits a 1-parameter group of automorphisms
A X = X, t € R*, whose Lipschitz constants for some left invariant metric
on X are < 1 for t € ]0,1]. (Notice that this A; is a combing in the sense of
Gersten.)

Remark. The above X admits a geodesic left invariant metric which is scaled
by Ay, i.e.

dist(A(z), Ai(y)) =t dist(z,y).
Such a metric is not, in general, Riemannian but is, what we call, a Carnot-
Caratheodory metric.

Erzamples. The Heisenberg groups Hany) are homogeneous foralln = 1,2,....
The free nilpotent groups are also homogeneous.

Let us indicate a very simple proof of the filling bound FyA(¢) < £* for
homogeneous nilpotent groups. Every § C X can be scaled to the unit
lengths with an appropriate ¢t € R*, i.e. length A((S) = 1, and then A,(S)
is filled in by a disk D, of a certain area Ar;. Then A;'(D,) fills in S and
Area A7 (D)) <€ 7% Ary, where A is the maximal eigenvalue of A, (acting
on the Lie algebra). On the other hand the length £ of § and the minimal
cigenvalue A of A, are related by the (obvious) inequality

>t
Thus the area of the disk D = A;*(D,) filling in § satisfies
Area D < Ar 2A,

Finally we observe, that if the Lie algebra L of X admits a grading of degree
dv
L=L,®L:;®...0 La,

then one can. (obviously) make A; with A < dX and have Area D < Ar %,

5.A%. Remarks. (a) The above filling bound is by no means sharp and it
also has the disadvantage of being restricted to homogeneous groups. What
appeals here is the simplicity of the argument which works for the filling
problem in all dimensions (compare 5.D) and which extends to certain non-
homogeneous situations. For example, if X is a borosphere in a complete
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manifold with pinched negative curvature K, namely —A? < K < —)3, theg
every circle § in X fills in a disk D in X with Area D < C(length §)%*/2 1o,
some universal constant C(< 100). (In fact, the same applies, in general, to
stable leaves of Anosov systems.)

(b) Let us improve the above £2%-bound by £4+1. To do this we assume § 3 id
and we take the cone over S built of the A;-semi-orbits for ¢t < 1 starting from
S. We estimate the length of such a semi-orbit {A(s)}, t € [0,1], s € X,
(where Ap(s) = id) by the same argument we used for Area D, which yields

length{A,(s)} < C(dist(id, s))*

for some C > 0 and all s € X within distance > 1 from id € X. Then we
see that the area of the filling cone (over S) is bounded by const(length S)4+
for length S > 1. This result is sharp in certain cases, e.g. for free nilpotent
groups of degree d (see [Ger]s and 5.B;), but it can be improved for many
nilpotent groups X. We shall indicate such an improvement in 5.A, based on
the analytic techniques presented in the next section.

5.A,. Filling in curves in Carnot-Caratheodory spaces. Let X be a
smooth Riemannian manifold and T) C T(X) be a subbundle of the tangent
bundle. The C — C metric in X associated to these data is defined as the
infimum of the Riemannian lengths of the curves in X tangent to T) between
pairs of points in X. We assume below (to exclude degeneracy), that every
two points z, and z; in X can be joined by a curve tangent to Ty. Then
the above definition gives us indeed a metric on X, as the C —~ C distance
between z, and z, is < co.

Now we address the following (filling) problem. Given a curve S of length
< 1in X tangent to T}, does there exist a disk D in X filling in S which
is everywhere tangent to T) and such that Area D < C (length S)? for some
C independent of S?7 We shall restrict ourselves to the special case of the
problem (which is good enough for our applications) where the Riemannian
manifold X is isometric to R” and $ lies in the unit ball in R™ = X around
the origin. Now the answer should depend on 7 only.

First of all we must decide if there is any non-trivial disk at all tangent to Tj
in X. (Here and below “disk in X” refers to a smooth or a Lipschitz map of
the unit disk into X and “tangent to T)” means that the differential of the
map sends the tangent bundle of the disk to Ty.) It is convenient to think of
our disk (at a regular point where the rank of the implied map equals 2) as the
graph of a (local) map f : R? — R""? and represent the tangency condition
by a system of m partial differential equations for m = 2codim 7y. Then one
can show that for generic T) with 2codimT; > n — 2 (where the system is
over-determined) there is no non-nontrivial (i.e. with a regular point) disk
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at all (see p. 166 in [Groliz). If 2codimTy = n — 2 and the (tangency)
P.D.E. system is determined, regular disks usually exist but there is no way
to prescribe the boundary condition 3D = S. The only case where one may
hope to solve the boundary problem 8D = S is where 2¢codimT; < n—2 and
g0 our system is under-determined. This system (for maps f : R? - R*"?)
can be written in the form

Dif=g (%)

where D) is a certain non-linear differential operator sending (n — 2)-tuples
of functions on R? to m-tuples for m = 2codim T}.

Now we state a result which easily follows from the Nash implicit function
theorem proved in [Gro)yz.

5.A%. Proposition. If the above operator D, is infinitesimally invertible (in
the sense of [Gro)2) then every smooth curve S in X tangent to T\ bounds a
(smoothly mapped) disk in X.

Remark. The infinitesimal invertibility is a certain ron-degeneracy condition
on D) which may be expressed by non-vanishing of certain determinants built
out of the (high order) derivatives of the “coefficients™ of D, (see {Gro];a).

The above proposition (and the proof by the techniques of P.D.R.) extends
to families of curves in X and then it yields the following

5.A5. Filling Corollary. If D, is infinitesimally invertible then every closed
curve S C X = R™ of length < 1 lying in the unit ball and tangent to T,
bounds a disk D tangent to Ty, such that

Arca D < C (length §)?

for some C > 0 independent of S (but depending on Ty).

Idea of the proof. It is easy with the above remark to have our filling D with
Area D < C(S) where C is bounded on every compact family of curves § in
X tangent to 7).

Lemma. There ezists a compact family of curves tangent to Ty, say S', such
that for every our S there ezists an §' € S' which meets S at 6 points such that
the resulting 6 arcs in S have lengths equal 1/6 length S and the corresponding
arcs in S’ have the length at most (} + ¢) lengthS for a fized small € > 0
(e.g. £ =0.01).

ldea of the proof. Divide S by 6 points into 6 arcs of equal length and join the
adjacent points by the shortest scgments tangent to T, see Fig. 12. These
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Fig. 12

segments form a curve S' with ¢ = 0 which can then be smoothed with a
slight increase of €. Q.E.D.

Now we fill in S by taking the best (i.e. the minimal among those which are
tangent to T}) fillings of S’ and of the 6 circles bounded by the pairs of arcs
of § and §’. Thus we see that the filling area function Ar(¢€) satisfies

Ar(e) < C'P + 6Ar((% +)0), (+9)

for C’ depending on S'. We take ¢, such that A =6 (% + e)2 < 1 and reiterate
(##) for (% + c) e, (:‘-, + 5)2 ¢, etc. Then we obtain

At(f) SC'C +AC'R + AC' +... <C" for C"=C'[1 - A.
Q.ED.
5.A,. Back to homogeneous nilpotent groups X. Let L=L, ® L; &

...® Ly be a grading of the Lie algebra of X and let T; C T(X) be obtained
by the left transport of L, ® ... L.

Claim. If the differential operator associated to T; is infinitesimally invertible
then the filling area function FoA(€) of X is bounded by CL* forall ¢ > 1.
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Sketch of the proof. In order to fill in a curve § in X we first approximate
it by a curve Sp tangent to T;, such that the length and the filling area of
So remain close to these invariants of §. Then we rescale S, to the unit size,
fll it in by a disk (produced in the previous section) of area < const and
then scale this disk back so that it would fill in So. This gives as in 5.A} the
£#-bound for the filling of S and consequently of S.

5.A,. Eramples. (a) Let X be the Heisenberg group. Then L is graded
as follows, L = L, & L,, where L; is the center and hence dim L, = 1 and
dim L, = 2n for 2n + 1 = dim X. The subbundle T} C T(X) of codimension
one gives the (standard) contact structure to X and the corresponding oper-
ator is infinitesimally invertible (as is easy to check up). Thus, we recapture
the quadratic bound on FoA(£) claimed (according to Gersten, see [Gerlg) by
Thurston. (I do not know if Thurston’s proof follows the same lines.)

(b) Let X be the (4n + 3)-dimensional nilpotent group (with 3-dimensional
center) which serves as a horosphere in the quaternionic hyperbolic space.
Here we have the grading L, ® Lz with dim L, = 4n and dim L; = 3 and tbe
corresponding operator i8 (by an easy argument) infinitesimally invertible for
n > 2. Thus, the filling area function is quadratic in this case as well.

5.A7. An improvement for d > 3. Fix two independent tangent fields
8, and &; in the unit disk D and look at the system of differential equations
whose solutions give us the maps D — X sending the first field to a subbundle
T\ C T(X) and & to a larger subbundle T; D 1. If ) = T; this is what
we had met in 5.A; and what was done there can be extended to the present
more general case. Then we apply tbe issuing analytic result to the nilpotent
groups X with L=1,®...® Ly where T} comes from L, ®... & L, and T3
from L) & ... Ly, for iy > ¢ and thus prove the following

5.A7. Generalization. If the associated differential operator is infinitesi-

mally invertible, then .
RA() cC*™ 21

Ezample. Take ¢, = | and ¢; = d, and assume that L, generates L as a
Lie algebra. (One can always achieve this by modifying the grading.) Then
one knows (see [Gro];2) that the operator in question (responsible for the
tangency of 8, to T) is infinitesimally invertible and so FpA(£) < C&+! (as
has been already shown in 5.A3).

Remarks. (a) I believe the inequality provided by 5.Ay' is sharp.

{b) To make 5.A% practical one should work out a simple condition for the
infinitesimal invertibility of our operators. (In general, checking infinitesimal
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invertibility is a mess of multilinear algebra hut in the special case of nilpotent
groups one hopes that there is a palatable criterion.)

5.A¢. Area fllling in non-homogeneous nilpotent Lie groups. Let [
be a nilpotent Lie algebra and C; C L be the linear subspace generated by
the commutators of length > {. We observe that L=C, > C, D ... > (,
and that [C;,C;} C Ci;;. Then we split L agreeably with this filtration,
L=Li®L;®...®» Ly such that L; ®...® Ly = C;. Observe that the linear
subspace L; C C; generates C; as the Lie algebra for every ¢t = 1,...d. Fix
a basis ¢; in L, such that the first §, vectors for j; = dim L, lie in L), the
following j; vectors for j; = dim L; lie in L,, etc. Then consider the linear
operator a; : L — L which consists in multiplying the vectors in L, by ¢, the

vectors in Lz by ¢* and so on up to d where the vectors in Ly are multiplied
by ¢4,

Observation (compare [Gro|;). The structure constants of our Lic algebra in
the basis {€:} = {at;} remain bounded as t — +oo.

This is obvious. In fact the structure constants, say e},, converge for t — o
to the structure constants of another Lie algebra L™ for which the linear
splitting Ly ® L; @ ... ® L4 becomes a grading, i.e. [L;, L;]® C Ly;.

Now, let X and X be the Lie groups corresponding to L and L* and
let T; C T(X) and T® C T (X*) be the subbundles corresponding to the
subspaces Ly @ ... ® L; foreach i = 1, ..., d. If we denote by X* the space
(group) X with the left frame corresponding to {£;}, then X* converges (in
an obvious sense) to X with a certain frame. In other words we replace
the rescaling used in 5.A% by changes of frames and in the limit our rescaling
takes us from X to X.

Generalization of generalization. Let us recall the set-up of 5.A7 and
look at the P.D.E. systems associated to pairs of subbundles T, C 7., C T(X)
and T? C TP C T(X). Since the subbundles T; appear as perturbations
of T (since T° are limits of T;) the infinitesimal invertibility for (the op-
erator related to) the pair (733°, T3°) implies that for (13, 1;,). Moreover,
this implies a uniform (in an obvious sense) infinitesimal invertibility of our
operators in the frames {£;} for ¢ — co. As a conclusion we obtain as in 5.A7
the following

5.A;. Upper bound on filling area. If the operator associated to (T, T7Y)
is infinitesimally invertible, then

FoA(8) < const £+ for all £ > 1.
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Corollary {Gersten conjecture). For all nilpotent Lie groups
FoA(L) < const 4!, £ > 1.

Proof. Since L{° generates L> as a Lie algebra our operator is infinitesimally
invertible.

Conjecture. Suppose, the codimension ¢, and ¢; of the above subbundles T;,
and T;, satisfies

a+ec<n—2, for n =dimX. (+)
Then I expect the relevant operator is infinitesimally invertible (at least for
generic L with given ¢; and ¢;) and consequently

FoA(L) < const £+ £ > 1.

This is motivated by the observation that our P.D.E.-system (with n — 2
unknown functions and ¢; + ¢; equation) is undetermined for ¢, + c; < n —2
and the infinitesimal invertibility is a generic phenomenon for undetermined
systems (see {Gro);2).

5.Aq. Filling area in lattices of rank 1. Let T be a non-cocompact lattice
in a simple Lie group of R-rank one. In other words [" discretely acts on a
symmetric space X of negative curvature such that the quotient space is non
compact but yet has finite volume.

Claim. T satisfies the quadratic isoperimetric inequality (i.e. FoA(€) < )
unless X is (isometric to) one of the following three spaces,

(1) X is the 4-dimensional compact hyperbolic space (here and below dim X
means dimg X ),

(2) X is the 8-dimensional quaternionic space,
(3) X is the hyperbolic Cayley plane (of dimension 16).

Proof. To simplify the terminology, we assume I" acts freely and then V =
X/T is a manifold with cusps which can be cut away by horospheres. Thus
we obtain a compact manifold V, C V with concave boundary. Each compo-
nent of the boundary is finitely covered by a nil-manifold which is, in turn,
infinitely covered by a nilpotent Lie group corresponding to the implied horo-
sphere. We know, (see 5.A%), that each of these groups satisfies the quadratic
isoperimetric inequality and since [ is hyperbolic relative the subgroups on
the boundary of V, (see [Gro)y,), T also satisfies a quadratic inequality as a
simple argument shows.

5.A;. Remarks. (a) The above argument applies to [ acting on (non-sym-
metric) spaces X with pinched negative curvature,

-0 < -C*< K(X)< - <.
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Here again each component of the boundary of V; is covered by a nilmanifolg
(whose degree of nilpotency is bounded by the ratio C/c, see [Grolsa;) and
the isoperimetric function of I' is bounded by those of the nilpotent groups of
the boundary. Therefore, the isoperimetric function (filling area) of T satisfies

FOA(t) S eo’

(where @ < 1 4 (log,(C/c) +1) ).

(b) Since the universal covering V, C V = X has concave boundary it admits
a Lipschitz retraction on each component of the boundary. It follows, that
the isoperimetric function (as well as any other filling function) for T’ cannot
be better (i.e. smaller) than that for the nilpotent groups at the boundary,
For example, in the exceptional case (1) of our rank one claim the boundary is
the 3-dimensional Heisenberg group where the isoperimetry is (known to be,
see [Gers and 5.B;) cubical and so FpA(¢) ~ £ for the lattices T in SU(2,1)
as well. (Probably, the other two exceptions also have FoA(¢) cubical.)

(c) Since V; has negative curvature “many” mninimal surfaces in ¥, have
Area Slength (boundary)

which suggests the linear isoperimetric inequality for ' on the average. Let
us explain what it means. Given a group [ with a fixed generating set we
denote by L, the set of all trivial words in T of length < €. We think of £;asa
finite probability space where all atoms have equal weights and then the filling
area becomes a random variable whose distribution we want to understand as
¢ — oo. In particular, we may ask if the expectation £, = E(Filly Area) on
L, is subasymptotic to the mazimum of Filly Area on L;, which is just another
name for FpL(£). (Subasymptotic means k;/FoL(£) — 0 for £ — oc0.) In the
simplest case where ' = Z" the standard recurrency properties of the randont
walk show that here indeed E; is subasymptotic to FoA(£) (and a similar
conclusion, probably, remains valid for the nilpotent groups. This looks easy
as the random walk in the nilpotent groups is well understood but I did not
check the matter for the lack of time.). Then, as earlier, the isoperimetric
bound extends froin (the nilpotent groups at) the boundary of V; to V; thus
yielding a subquadratic isoperimetric inequality on the average for our lattices
I’ acting on X at least in the case of X of constant negative curvature (where

the horospheres are Euclidean spaces and the implied nilpotent groups are
Abelian).

Notice, that the subasymptotic behaviour of E, (relative to FoA(£)) for our
lattices [ may have another source independent of the geometry of the bound-
ary of V5. Namely, a random closed curve S of length £ in V, is unlikely to
stay for a long time close to a single component of the boundary. If so, the
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filling area of S will be significantly smaller than that for the curves in the
boundary.

(¢') The above “random” considerations become more transparent if, instead
of lattices T', we look at free products of Abelian (and/or nilpotent) groups.

d) The effect of relative hyperbolicity on FoA may be also seen in certain
manifolds Vo with non-positive curvature and concave boundary. A typical
instance of that is provided by lattices T of Q-rank one in 3.G. There, the
boundary consists of several components covered by solvable Lie groups and
the function FuA(£) for T is bounded by those for these solvable groups. Such
hounds can be established by looking at minimal surfaces in ¥, (which may
touch the boundary of f’o)

5.Ay. Filling in general Lie groups and lattices. We know (see §3)
that most of Lie groups (and lattices) are exponentially Lipschitz retracts in
X = SL(N)/SO(N) which is a space of non-positive curvature and so satisfy
the quadratic isoperimetric inequality. Moreover, some (minimal) filling disk
of a curve S of length £in X (obviously) lies in the R-neighbourhood of S for
R < &/2x (which is better than a mere linear bound on the filling radius, see
|Gro]io for an extensive discussion). It follows, that exponentially Lipschitz
retracts in X satisfy the exponential inequality

FoA(l) SexpCL.

In particular we obtain this inequality for the connected subgroups in SL(N)
(and then for all Lie groups by a simple additional argument) and for the
lattices (cocompact and non-cocompact) in the semi-simple Lie group.

Remark. The above argument applies to all filling invariants. In particular
onc sees this way that every closed curve S in a Lie group or in a (thickening of
aj lattice bounds a A-Lipschitz image of the unit disk for A ~ exp C length S.
{llere, as usual, one maps the disks into some thickening of the group in
question.) In other words, the filling span FpS(€) (which bounds the rest
of the filling invariants) grows at most exponentially. This follows (via the
exponentially Lipschitz retraction) from the (well-known) lincar bound on
FoS(€) for simply connected spaces X with K(X) <0.

5.A,. Thurston’s assertion for Filly Area in SL,Z. According to [Gerls
Thurston proved that the groups SL,Z for n > 4 satisfy the quadratic isoperi-
metric inequality, i.e. FpA(€) ~ € and one expects a polynomial bound for
the k-dimensional filling functions for k =2, 3, ..., n—2. Butfork=n—1
the filling function is exponential (see [E-C-H-P-T)).

5.A¢. Quadratic filling inequalities in solvable groups. Solvable Lie
groups of high R-rank arc expected to satisfy a polynomial isoperimetric
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inequality. Look, for example, at the semi-direct product R™ o< R*"! for the
diagonal action of R*~! = (R%)""" on R" with determinant one. It is easy 1,
see with the arguments in (f) of 2.B and in 5.A%, that FoA(£) ~ £ forn > 3
(This agrees with Thurston’s claim for SL,Z, n > 4, and therefore must be
known to the authors of [E-C-H-P-T].)

5.B. Lower bounds on the filling area. Take a smooth closed curve § iy
a manifold X which is known to bound in X and let us try to bound from
below the area of a surface M in X with @M = X. Here is a simple situatiog
where one can do it.

5.B,. Fibration inequality. Suppose X is fibered over R by a smooth
function f : X — R whose gradient is everywhere > 1. Let X; = f~(1), te
R, and S = SN X,. Since the intersection is transversal for almost all ¢, our
S is finite for a.a.t. and can be thought of as a 0-dimensional cycle in X,
(over Z if we choose to orient S and over Z; in any case). Denote by Fé(t)
the infimum of the length of 1-chains C in X, with C = S, and obscrve that
every surface M with OM = S has

length M N X, > Fe(t).

This integrates, via the coarea inequality (sce {Gro)o all about that) to

+00
Fill Area § > / Fe(tydt. (¥

Remarks. (a) The above inequality (+) becomes interesting when the hyper-
surfaces X, are strongly distorted in X and F¥(t) is significantly greater than
the distances between the points in S, measured in X. We shall see this
presently.

(b) The inequality (*) obviously generalizes to the k-dimensional isoperimetric
(filling) problem and yields a lower bound on the corresponding function
Fill Vol in terms of Fill Voli., (X}), t € T, where T may bc now of dimension
k" in the interval 1 < k" < k—land ¥ =k -1 k"

5.B,. Nilpotent groups. The simplest case is where X is the 3-dimensi-
onal Ileisenberg Lie group fibered over R by some non-trivial homomorphism
f : X — R. The fiber is R? which is, itself, fibered by the lines “parallel” to
the center of X. These central lines are, as we know, quadratically distorted
in X: a segment of length € > 1 on such a line has its ends within distance
~ /€ in X. Yet, these lines are undistorted in our fibers X; = R?, which
makes X; rather distorted in X.
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Now we take another homomorphism, say ¢ : X — R, independent from f
and look at Yo = ¢g71(0) C X which is also R? sliced into central lines,. We
iake a closed rectangular curve [¥ in Y; whose one pair of opposite sides is
parallel to the center and has length # while the normal sides have length
(. Then we replace the £-sides by the minimal geodesic segments in X D Yp
and call the resulting curve in X by 0O,. We choose both length # and £ large
(eventually they go to infinity) and such that & = e/? for a small fixed £ > 0.
Then the sides of O, corresponding to the #-sides of O’ have length £ ~ ¢,
see Fig. 13 below.

Fig. 13

Now, we intersect O; with X; and we observe that the pair of £-sides meets
X, at two points within distance & in X, for ¢ running over some segment in
R of length ~ £. Moreover, by making this segment &-smaller we arrive at
the situation where the £”-sides are not met by X, at all for ¢ in this smaller
interval. Then F{(t) = ¢ and

Fill AreaD), 2 €€ ~ £(¢")’ ~ ¢? (length O)* .

~

Thus we obtained Gersten’s inequality FA({) 2 £ for the Heisenberg group.
(Notice that we allow here all surfaces or chains M, not only the disks, filling
in § and so our bound applies to F A(€) which is a priori < FRyA(¢).)

Let us extract the essentials from the above argument. Let X be a simply

connected nilpotent Lie group and X, and Y, connected subgroups, such that

(a) codim X, = 1.

(b) dimYs = 2.

(c) dim(Zo = XoNY) = 1.

{d) the group Zp == X, N Yy has polynomial distortion of degree at lcast d in
X. A (necessary and) sufficient condition for that is

Z c (X, X,)X)...].
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(€) the distortion of Zg in X, is polynomial of degree at most ¢ < d. Fo
this it is sufficient not to have Zo in the (e +1)-th commutator subgroup,

[(Xo, Xal,...] -

Then our argument yields the bound
FA(l) 2 * (»)

fora =dje+1.
Ezample. Let X have nilpotency degree two such that
(i) the center Z of X equals [X, X].
(i) k=dimZ > @222 for m = dim(X/Z).
Then FA(€) 2 6.
Proof. Under the above assumptions for every subgroup Xo C X of codimen-

sion one containing Z, there exists a 1-parameter subgroup 7, C Z, which is
not contained in [Xq, Xo}, because

We conclude the proof by generating Y, by Zp and any y € X — Xj.

5.B;. Solvable groups. First, let X be a 3-dimensional simply connected
Lie group split into the semi-direct product, X = R?t< R where R acts on
R? by (z,y) — (e*"z, c'\"y). (Compare (e) in 2.B where the notations are
slightly different.)

Claim. If A\, > 0 and A2 < O then the isoperimetric (i.e. filling area) function
FA(¢) grows ezponentially.

Proof. We constructed in (e) of 2.B certain curves 0% C X (see Fig. 5 in
2.B), which we now intersect with X; = R? x t and apply the above fibration
inequality. This gives the desired lower bonnd on Fill Area ] since the fibers
X, are strictly exponentially distorted in X (see 3.C.;). Q.E.D.

Remarks. (a) The lower exponential bound for FoA(¢) in the case Ay = ~X
is due to Gersten (see [Ger]q ).
(b) If Aj, Az > 0, then X is hyperbolic and FA(#) ~ £.

Generalization. Let X = No<R, where N is a simply connected nilpotent
group which contains an isomorphic copy of R? invariant under the action of
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R such that this action on R? has two eigenvalues Ay > 0 and A3 < 0. Then
FA() ~ exp for this group X.

The proof is clear at this stage. One should only keep in mind that the
distortion of R? in IV is (at most) polynomial since N is nilpotent.

Further generalization. Let again X = No<R and the action of R have
two eigenvectors (in the Lie algebra of N), say z and y such that the corre-
sponding eigenvalues satisfy A, > 0 and A3 < 0. Then FA(¢) ~ expl.

ldea of the proof. If [z,y] = 0 we are in the situation we had earlier. To grasp
the idea of the general case we assume z = [z,y] lies in the center of (the
nilpotent group) N. If the action of R on 2z has non-zero eigenvalue, then
again we can pass to the previous case. So, the key new situation is where N
is the Heisenberg group with the standard basis z,y, z in the Lie algebra and
R acts by

(z,y,2) v (e'\‘z. e My, z)

for some A #£ 0.

Now consider the following hexagon with a self-intersection point in the (z, y)-
plane.

Fig. 14

Since this hexagon bounds zero algebraic area in R? it lifts to a hexagonal
curve O4 (which is mapped to R? identified with N /center). We modify this
curve as earlier by replacing the six edges in N by the shortest segments in
X > N. The resulting curve O in X has length about log d while its filling
area is bounded from below by something like d by our previous argument.

5.B,. Whitney duality. We return to the general situation of a Riemannian
manifold X with a closed curve S C X whose filling area we want to bound
from below. We assume H2(X) = 0 and take an exterior closed 2-form w on
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X. Then we observe that the integral of w over a surface M filling in S does

not depend on M
Ju:lw

for oriented surfaces (Z-chains) having M = M’ = S. (If Ha(X) # 0 the
above equality remains valid if w is exact.) Now, suppose the pointwise norm
of w on X is bounded by a constant ¢ > 0. Then, obviously,

Fill Area § > ¢! / w| (+)
M

where one can use any M one wishes with dM = $.

Remarks. (a) For all its triviality the inequality (+) may be quite useful as
we shall see presently.

(b) A deeper aspect of the relation between the area and integrals of forms

is revealed by Whitney's duality which claims that (+) is sbarp (see [G-L-P),

[Gro}ip). Namely, there always exists a form w (depending on X and S) for

which Fill Area > ¢7?| f w|, where Fill Area is defined with R-chains filling in
M

S. (This means we fill in the k-multiple of $ by a minimal surface M; and
then go to the limit lim k~! Area M, for k — 00.) We do not (know how to)
use the full power of Whitney duality but only the simplest instances of that
which are clear as they stand without any explicit reference to Whitney's
theorem.

5.B,. Application of (+) to Lie groups. Let X = R?<R be our old
friend, the solvable group of 5.B;. Now we require Ay = —A; # 0 and we want
to give another proof of the lower ezponential bound for the filling area of the
curves [ in X. First, we invoke the projection p: X - R? = R*x 0 C X
corresponding to the splitting of X and we denote by w the pull-hack of the
area form on R?. This form is (pointwise) bounded on X since A, + Az = 0.
Newt we construct an M filling in O, as follows,

M=M+M

where M, is the cylinder of the projection p : 0% — R? C X and M, is the
square in R? bounded by 0y = p(0) C R®. Since the form w vanishes on M,

we have
/w = / = arca M.
M M,

As length O ~ log area M, the proof follows.
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Remarks. (a) Our proof reproduces a fragment of a beautiful argument used
in [E-C-H-P-T] to bound from below the (n — 1)-dimensional isoperimetric
(i.e- filling) function for SL,Z.

(b) There is an obvious generalization of the above proof to more general
semidirect products X = R?e< X’, where the implied action of the subgroups
x' on R? is unimodular and X’ is simply connected. Here again we have
a lower bound on Fill Area depending on the distortion of R? = R? x 0 in
X. Namely, the exponential distortion gives us the exponential lower bound
(notice, that the distortion here does not have to be strict, i.e. the exponential
distortion on a line of R? will do), and the polynomial distortion has a similar
effect.

We conclude our discussion on lower (and upper) bounds for Fill Area on a
somewhat pessimistic note. The present methods lead to satisfactory results
only in a few special cases even in the friendly geometric surronndings of
solvable and nilpotent groups.

5.Bs. Growth of differential forms and cofilling inequalities. Consider
the following problem which is, in a way, dual to the filling problein of curves
in X by minimal surfaces. Take an exact 2-form w on X and look for a
“minimal” 1-form o, such that de = w. In order to make the word “minimal”
precise we denote by ||e||(R) the supremum of ||a.|| for z running over the
R-ball around a fixed point zo € X. Then we define the function Cof(R) as
the infimum of the functions S( R) such that for every exact 2-forin w on X
with Jlw ]l < 1 for all z € X there exists a form a satisfying do = w and
lell(R) < B(R).

Ezamples. (a) Let X be a complete simply connected Riemannian manifold
with convex boundary. If K(X) < —c < 0, then the function Cof(R) is
hounded. 1n other words every bounded closed 2-form w on X is the differ-
ential of a bounded 1-form. To see this we use the geodesic cones in X from
a fixed point o € X. Taking cones over the tangent vectors in X defines
a linear operator from 2-forin to 1-form: the value of the resulting 1-form
on T € T(X) equals the integral of the 2-form over the infinitesimal triangle
which is our cone from z, over 7. The curvature condition K < ~¢ < 0
implies the bound on the areas of these triangles by const(length of the base)
and our claim follows.

(2') Remark. The above property, propetly formulated, is shared by all by-
perbolic spaces and, in fact, characterizes these spaces.

(b) Let us relax the curvature condition to K(X) < 0. Then the above cone
argument gives the bound Cof(R) < R. Notice that this bound is sharp for
X = R? in the following strong sense: there exists an exact 2-form w on R?
with [|w|| € 1, namely w = dz A dy, such that every a with da = w satisfies
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llall(R) = R. This is seen by integration a over the circles of radius R passing
through To.

The above example suggests a similar property for other “reasonable” spaceg
(e.g. simply connected Lie groups): there exists an exact 2-form w on X with
llwll €1, such that the forms a with da = 1 admit uniform lower bound on
the R-balls,

lleli(R) < Cof_(R) (+)

where Cof _(R) is a function “similar” to Cof(R). The best similarity would
be the asymptotic relation

limsup Cof(R)/ Cof_(R) < oo.
R—oo

One also expects, in view of the Whitney duality, that for “reasonable” spaces
the filling and cofilling functions are essentially the same, which means some-

thing like FA(R) ~ R Cof(R).
Now we look at the cofilling function in some Lie groups.

Ezamples. (a) If X is an exponentially Lipschitz retract in a space with
K £ 0, then the function Cof(R) for X grows at most exponentially (compare
§3).

(b) In the Heisenberg group the cofilling is at most quadratic. More generally,
a homogeneous nilpotent group of nilpotency degree d has Cof(R) < R* This
is seen using the dilation (compare (b) in 5.A%), in the same way we used the
geodesic cones for K < 0.

(c) Let X be a 3-dimensional solvable group split as usual X = R?*t< R. If the
action of R on R? is as in 5B/, i.e. with two eigenvalues A} > 0 and A; = =),
then the form w constructed in 5B, is essentially eztremal for the cofilling
problem, i.e. every 1-form o with do = w satisfies

la(R)] 2 expeR

for a fixed € > 0. Notice that this form is also defined if the action of R in
R? is unipotent and X equals the Heisenberg group. Iu this case our forms a
are (uniformly) bounded from below by

o(R) 2 R

5.B;. Cofilling for invariant forms. If X is a Lie group or, more generally,
X comes along with a cocompact action of a discrete group T, then we havea
distinguished class of bounded forms w on X, namely, the class of I'-invariant
forms. For example, the 2-form w in the above (c) is invariant (under the
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solvable group X itself and, hence, under every discrete subgroup I'). As
exact T-invariant forms w on X represent the cohomology classes in I, one
may formulate the following

(Co)homological cofilling problem. Given a cohomology class h € H*(T).
Find a “smallest possible” 1-form a on X whose differential w = da is a
[-invariant form representing h.

Ezample. Let X be a Hermitian symmetric space with K(X) < 0 and w
the implied Kahler form. One knows, that w = do for some bounded 1-form.
This makes X (and groups I' acting on X) rather hyperbolic in-so-far as the
complex geometry is concerned (see [Gro]).

We want to know, in general, upper and lower bounds on the above a (e.g.
bounds on ||a||(R)) in terms of I' and . Here is a simple example generalizing
the above (c).

Ezample. Let [y C T be a subgroup isomorphic to Zx Z, such that a given co-
homology class k in H?(T'; R) restricts to non-zero on I'o (where H? (I'o; R) =
R). If T has strictly exponential distortion in T (i.e. distr, < ¢ log; |To) then
every 1-form a (on a smooth simply connected thickening X of I') whose dif-
fercntial do defines h, must grow at least exponentially (on X'). To see this
we look at R?in X thickening [y C I' C X and take R-disks in R? in the Eu-
clidean metric. These disks D(R) have size ~ log R in X but the integral of
the 2-form w on X representing h over D(R) is about R?. Hence the integral
of a (having dor = w) over the boundary dD(R) of length ~ R must also be
~ exp R, which makes the supremum of o (in the ball of radius ~ log R) at
least B. Q.E.D.

5.BY. Cohomology with a control on the growth. Given a positive
weight function 8 on X one may define the L.-norm on forms with respect
to 3 by |af _-sup llaz||8~'(z) and then study the cohomology of the de

Rham complex of L-forms. One can do the same thing for the L,-norms,
where the most interesting case is that of p = 2 and g = 1. The resultmg
Lz-cohomology theory is quite fruitful already for hyperbolic groups where
little of interest can be said for Ly, (compare §8).

5.C. Filling diameter, etc. We want to say just a few words about the
rest of the filling invariants introduced at the beginaing of §5.

Filling area of a given genus, Fill; Area. This invariant becomes more inter-
esting when it is generalized in order to cover the filling problem for non-
contractible curves in V for xy(V) = I’ (see §6).

Filling diameter Fillo Diam. This was introduced and extensively studied by
S. Gersten (see [Gerjg), who, in particular, related Filly Diam to Filly Area.
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We have already mentioned the bound
Filly Area < expexp(C Filly Diam).
One can also bound from another side,
Filly Diam < Filly Area

(see [Ger)g) and this bound sometimes can be improved. For example, let
Filly Area grow polynomially, i.e. FoA(Z) < £* for some a > 1. Then

FoD(£) < €71, provided a > 2.

This follows from the corresponding bound for Fill; Rad stated below.

Filling radii FillRad and Filly Rad. The filling radius Fill Rad was defined
homologically with an eye on higher dimensional generalizations (see (Gro),q).
But we also may define Fill; Rad geometrically using disks in X filling in a
given closed curve. Then the monotonicity argument (see 2.4 in [Gro)y)
applies to disks and shows, in particular, that

FoA(t) S £ = FoR(€) < log R and FoA(l) < € = FuR() <7V a > 1.

(Here Filly Rad is defined as the supremum of the radii of the disks D in X
with 8D = S, where Rad D £ sup distp(z,dD). Thus
€D

Filly Diam S < max (length S, Fillg Rad ),

which implies the bound on Fillp Diam stated above.)

Filling length Fillp Leng. This can be used (like Fillg Diam) to bound the
size of Fillg Area as follows. As we contract a curve S in X we may assume
that the base point of § remains fixed because we have I" acting on X in
a cocompact (or better to say cobounded) fashion. The number of different
curves represented by words of length L is about exp C L; therefore, the
contraction of S to a point can be achieved in at most exp C' L steps if we
have an a priori bound on the length of the curves by L. Thus

Filly Area < exp C'Filly Leng.

Question. Can one bound Filly Leng by const Filly Diam for all groups I'!
The solution would follow if one could solve the following purely geometric
problem. Let D be a disk with some Riemannian metric. Can one contract
the boundary S = 3D in D by a homotopy of curves of the length L bounded
by

L < const max(length S, Diam D),
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for some universal “const”, e.g. const = 10'°?

Remarks. Steve Gersten recently pointed out to me that he had studied
the filling length earlier under the name of “controlled null homotopies™. In
particular, he was well aware of the above inequality for Filly Area and the
problem of bounding Filly Length by const Filly Diam. In fact, he attributes
this problem to A. Casson. Also Gersten claims the following

Theorem. If every contractible curve S of length £ can be filled in by a disk
D satisfying AreaD < f(€) and Diam D < g(€) for given positive functions
f ond g, then

Fill Length § < log(f(6) +1) + g(¢) + .

This result was reported by Gersten in Albany in October 1991 and will
appear in his paper on controlled null homotopies and combing.

Even more recently (July 92) S. Frankel and M. Katz found a counterexample
to the above geometric problem, which runs as follows. Start with the cylinder
§' x [0,1] with the metric p?(2)ds? + dt? where S* = R/Z and where the
function ¢(t), t € [0, 1], starts with p(0) = 1 and grows to ¢(1) = 2N, where
N=3+3-243-22+4...43-2"is the number of edges in the standard
3-adic tree T of depth k. Then the circle §* x 1 C S' x [0,1] of length 2N
collapses to T in an obvious manner and Frankel and Katz show that in the
resulting disk Dy the boundary S* = $' x 0 cannot be contracted by curves
of length < -’25

Modified filling length F, L for nilpotent and solvable groups. Define the func-
tion F, L(£) for a space X as the minimal numher L, such that every two
paths pg and p in X of length < £ with the same ends z and y in X can be
joined by a homotopy of paths p,, t € [0, 1] with the fixed ends £ and y, such
that

lengthp, < ¢ for every t € [0,1].

Clearly, F, L(£) > FoL(f) and also F, L(£) > FoD(£).
Claim. If X is a simply connected nilpotent Lie group then Fy L(£) ~ ¢.

Idea of the proof. We argue as in 5.A5 and reduce the problem to the following
elementary property of Carnot-Caratheodory spaces similar to (and simpler
than) what we have met in 5.A3.

Let T be a smooth subbundle of the tangent bundle T(R") such that consecu-
tive Lie brackets of the vector fields tangent to T span T(R"). Consider two
smooth patbs pe and p; with common ends in R™ tangent to T and contained
in the unit ball Bo(1) C R™. Then there ezists a homotopy of paths p, in
By(1), such that
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(1) pi is tangent to T for every t € (0,1],
(2) lengthp, < const max(length po,lengthp,), where const depends on T
but not on pp and p,.

Remark. Our claim is, formnally speaking, stronger than Gersten’s linear
isodiametric bound for nilpotent groups, but it seems Gersten's argument
(see [Ger]sq) bounds FL as well.

Now let X be our solvable group Sol, 41 = R™ < R defined with some diagonal
linear action of R = R} on R". Here again we claim that F; [(€) ~ { which
slightly improves upon Gersten'’s linear bound on FyD(£). To see the idea
of the proof we assume n = 2 and the action has A} > 0 and A; < 0.
Then X = Sols is sliced in two ways into hyperbolic planes that are Sol;(A))
and Sol;(A;) and every path can be approximated by a curve contained in a
finite number k of slices (and built of s.h. segments as in (f) in 2.B). Short
homotopies between such curves for a fixed ko can be directly constructed in
the class of such curves with a slightly larger k, (say kj = 10ko) and then the
general case follows by the iteration argument used in 5.A7 and in 5.As.

Conjecture. Every simply connected homogeneous Riemannian manifold X
has F, L(£) ~ £. (One can drop “simply connected” when one works on the
large scale.)

It is also temnpting to conjecture that Fy L(€) ~ £ for the lattices T in all Lie
groups. In fact, this can be easily proved for the lattices I' with rankg ' = 1 i0
semi-simple groups whenever the (concave!) boundary horospheres have F, [
linear (as it happens, for example, for lattices in (SL;R)", such as Uilbert
modular groups).

Morse landscape of I'. Let, as usual, X be a Riemannian manifold with
a discrete cocompact action of I' and, to simplify the picture, we assume X
is contractible. We denote by § the space of closed curves in X (one should
specify if the base point assumed fixed or not) and let L(S), S € & denote
the length of S. Thus we have a (contractible) topological space with a
function L : § — R;. The ordinary Morse theory tells you nothing about the
critical points of L because S is contractible. Yet, if we assume that the filling
length function FyL(¢) grows faster than linearly, then the function L on §
necessarily has infinitely many local minima. In fact I, has arbitrarily deep
basins consisting of curves which cannot be contracted without stretching
them very much.

Besides local minima L inay have highly stable saddle points which have the
following topological origin. Denote by S; C S the level L™ ([0,4]) of L
and let R}(¢) be the infimal value & > £ such that the homological inclusion
homomorphism Hy (S:) — i (Se) is trivial. Whenever the function Rj(€)
grows faster than linearly we have stable “k-dimensional” mountain paths in
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the Morse landscape of L : § — R4 which bring to life (highly stable) critical
points of L (represented by closed geodesics in X).

Question. Can one estimate the number of basins of given depth and/or eval-
uate the function Ry(¢) for concrete groups I'? Of course, the same question
arises for k£ > 1 but this appears more difficult.

One can extend the above question in (at least) two directions. First, one
may take V = X/I', (assuming the action of I' on X is frce) and look at the
Morse landscape of the length function on closed (now not only contractible)
curves in V. Then one may study the similar problem for maps of higher
dimensional manifolds (rather than of S') into V (in particular, into V=
X). If the underlying group I is, logically speaking, sufficiently comnplicated,
then one expects a mountainous Morse landscape enforcing many solutions
of variational problems of all kinds (compare [Grols). Yet, no specific result
(except for local minima of L(S)) is known in this regard.

We do not expect much of the Morse landscape on closed curves in a Lie
group X. For example, the function R ({) is, probably, bounded by ¢, for
some cx > 0. (This is easy to prove for nilpotent Lie groups and also does
not look hard for sonie solvable groups like R*te<R*.) Yet, there may be
something interesting in the asymptotics of ¢ for ¥ — oo and also the Morse
‘andscape may have non-stable critical points of gecometric value.

Filling Span Fill, Span. This invariant majorizes the rest of them and so the
upper bound for it is most desirable. It is well-known that F,5(£) ~ € for com-
plete simply connected manifolds X with convex boundary and K(X) < 0.
In fact, this is true whenever one has a combing in the sense of [E-C-1I-P-T],
e.g- for automatic groups. One can also easily see that FpS(€) is at most
polynomial for nilpotent groups X. Moreover, if X is homogenecous of nilpo-
tency degree d then FoS(¢) < £*. Furthermore, our estimation for Fill Area
based on Lipschitz controlled retractions obviously extend to Fill Span (and,
in fact, to all conceivable filling invariants), which gives us, for exanple, the
exponential bound for Lie groups and semi-stmple lattices.

5.D. Filling in for submanifolds and cycles of dimension k > 2. Let
us indicate the essential new features of the filling problem for & > 1.

(1) Topology. There are nany different topological types of connected k-
dimensional manifolds for ¥ > 2 and solutions to filling problems may be
sensitive to that.

(2) Geometry. The intrinsic geometry of a closed curve is characterized by
the length but higher dimensional manifolds have infinitely many invariants.

(3) Connectivity. FEvery finitely presented group T is l-connected on the
large scale which makes the 1-dimensional filling problem non-ambiguous.
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For k£ > 2 one should either assume the large-scale k-connectivity of 1" or take
extra precautions in the non- k-connected case.

(4) Non-locality. A circle of length £ in X obviously has diameter < ';l and
30 one can often localize the filling process to a ball in X of some radius R
depending only on £. If k > 2, then the k-dimensional volume of a subman.
ifold £ C X, dimX = k, by no means bounds the diameter of . However,
this difficulty can be often resolved by the filling techniques of [Gro}yo. The
idea is that £ can be (kind of) decomposed into two pieces Lynia and By,
where the thick part has the diameter under control and the thin part lies
close to something lower dimensional which is taken care of by an induction
on dimension.

Ezample. 1t is shown in [E-C-H-P-T] that every k-dimensional cycle Z in (a
thickening of) an automatic group bounds a chain C, satisfying

Volk41 C < const (Volg Z) (Diam ).

It follows from [Gro];o that one can exclude the diameter and find a chain C,
such that

Voli41 C < const (Vol, E)‘.‘tl .

(According to [Ger]; this was conjectured by Thurston.)

(5) Miscellanea. (a) It is sometimes difficult to pinpoint what goes wrong
with a (filling) argument when the dimension increases. Look, for example,
at our filling of circles in Carnot-Caratheodory spaces in 5.A3. The technically
difficult analytic part of the argument appealing to infinitesimal invertibility
works equally well in all dimensions. But the simple looking iteration process
(with hexagons) breaks down for k¥ > 2, because there is no nice canonical
subdivision of a k-dimensional manifold into smaller pieces (compare Fig. 12).

(b) One must be eventually able to determine the isoperimettic behavior
of all connected Lie groups. To obtain some insight, let S be the solvable
group considered in (f) of §2.B, i.e. the semi-direct product R"<R™™" for

R = (R:)"—l diagonally acting on R" with determinant one. Here one
expects the filling volume function (characterizing minimal (k + 1)-chains
filling k-cycles) to be Euclidean, for small k, namely FV,1(f) ~ et for
k=1,...,n—2 (We know this is trne for £ = 1, see 5.Ag.) Then, if
k = n—1, the function FV(Z) is exponential (see final remarks in (f) in 2.B).
Finally, when k > n, one suspects FVi,(€) grows almost linearly, i.e. &
foreveeya > 1. (If k+1=2n—1=dimS$, then

FViy1(£) grows faster than linearly, because S is a unimodular amenable
group. But for n < k < 2n — 3 the filling function FVi;1(€) may grow
linearly, for all we know.)
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{b') Let us justify our optimism concerning the filling volume in the dimen-
sions above R-rank by the following two remarks.
(b)) Let X be a symmetric space with non-positive curvature. If k +1 >
rank X, then FVi,1(£) ~ £ In other words, every k-cycle £ in X bounds
some chain C with

Voli,; C < const Vol Z. (*)

The construction of C is well known: choose a maximal flat F C X (which
is isometric to R" for r = rank X), normally project ¥ to F and take the
cylinder of this map for C (We may throw away the part of F which is not
the image of the projection.) The bound (#) follows from the exponential
decay of the volume contraction of the normal projection p : X — F. This
means that the norm of the differential of p acting on tbe £-th exterior power
of T(X) satisfies

1Dy | ATl < exp—C dist(z, ¥)
for all z € X and some positive constant C > 0. (Notice that the isoperimetry
in our X below the rank is Euclidcan, i.e. FVi1(€) < ¢+ ) for all k > 1)
(b3). Let X be a solvable group which is a semi-direct product, of the form
X = R"< R" for some linear action of R" = (R:)' on R™.

Claim. If k > r + 1 then every k-cycle L bounds a chain C satisfying
Vol,4) C < const ((Volk £)* 4 1)

fora=—(k+1)/r —k.

Proof. Define the dilation Az for + = (y,z) € X, y € R" and z € R", by
Az = (Ay, 2) for all A > 0. Using this dilation we want to reduce the (inter-
esting) case Vol £ > 1 to Volgy1 £ < 1. In the latter case ¥ bounds C with
Volgy1 C < const (Vol, E)LF, since X has locally bounded geometry being
homogeneous. Now if Vol £ > 1 we use our dilation with A = (Vol £)~{"—%),
Then, obviously, the dilated cycle ¥ = AX has Vol, %’ < 1. This bounds C"
with Volgy, €' < const which we dilate back to € = A™'C". This increases
the volume by at most the factor A=+ (recall, A < 1). Thus

Volyy; € < const A=%+Y == const (Vol, £) 7 .

Q.E.D.

Generalization. Let X be a simply connected solvable Lie group and N C
X a nilpotent normal subgroup such that X/N = R’. Then the (k + 1)-
dimensional filling is polynomial for k > r, i.e. FVoliy1(8) < €* for some o
depending on X (and bounded by ag = ap(dim X)).

Idea of the proof. Use a fake dilation in N as in 5.As.
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(¢) The above (mostly conjectural) picture for solvable groups probably ex.
tends to non-cocompact lattices I' in semi-simple Lie groups. For example,
if rankg I = 1, then the isoperimetry of I' is essentially the same as that of
tbe boundary horospheres H (which are solvable groups). In fact, to find a
good filling for a k-cycle ¥ lying in the core Xp of the symmetric space X
on which I acts (recall that X;/T" is compact and the boundary of X, C X
is concave for rankgT" = 1, see 3.H) we first fill in T by the minimal chaig
C in X and then fill in the intersection C' N 3X, in 8X,, where a bound op
Vol (C N 8X,) is achieved by normally moving 3X, by distance d < 1. This
argument shows that the filling volume functions for X and H are related by

FxVip1(8) S FuVipa(€)  for k > rank X,
and
FxVi(8) £ FyVi (87) for a= (k4 1)/k and k < rank X.

(The presence of a is due to the fact that Voliy, C is bounded by (Vol, £)°
and an intersection of C' with moving 3X, can be bounded by Vol C and no
better. But I am pretty certain one can somehow manage without any a.)

If rankq I’ > 2 one expects similar results but the proofs appear more difficult.
For example, if ' = SL,Z one's bet is FViy)(€) ~ ¢ for k = 1,...,n=3,
which generalizes Thurston’s unpublished result for k = 2 and n > 4. Theu
one knows FVi4(€) is exponential for k = n — 2 (see [E-C-H-P-T}) and for
k > n —1 the expected behaviour is FV,y;(€) ~ £ (or at least < €%).

(d) Remarks on FillRad. The notion of the filling radius given at the begin-
ning of §5 naturally extends to higher dimensions and it goes along with the
filling volume as we have already mentioned (also see [Gro]jo). Recall that for
k =1 (i.c. for the filling of curves) there is a modified filling radius Filly Rad
reflecting the geometry of disks filling in a given curve rather than surfaces of
unspecified genus and the corresponding function FyR is equivalent to FpD
measuring the filling diameter. Now, when we pass to k¥ > 2, one may mean-
ingfully generalize Filly Rad but this seems impossible for Fill Diam, because
the diameter of a k-dimensional cycle is not bounded by its volmne for k > 2.

Conjecture. Every connected Lie group X has FR(€) ~ € in every dimension
k. (Here the filling radius is defined on the large scale, i.e. in some thickening
of X, as usual.) Moreover, this may even be expected for a suitable Fy R(¢) as
well as for a higher dimensional (and/or multiparametric version) of FyL(¢)
defined earlier. Then, with certain reserve one extends this conjecture to the
lattices in Lie groups.

(e) Filling and combing. Combing, or Lipschitz contraction of X, (compare
[Al]1,2), fills in every £ in X by a cone C over ¥ which is the “orbit™ of ¥



5. Filling Invariants 107

under the contraction. If the combing is also Lipschitz in the time direction
(as it happens, for example, for automatic groups, see [E-C-H-P-T}), then,
by choosing the base of the cone in I, one can have this cone no bigger
than £ x [0, D for D = Diam £, as is pointed out in [E-C-H-P-T). We have
already mentioned that this cone property implies via [Gro|,o the Euclidean
isoperimetric inequality in X, i.e.

FVin(Q) ~ % forall k> 1,

and consequently, the linear bound on FR. Furthermore, Gersten observed
(see [Ger]e) that the “Lipschitz in t" condition is not needed for the linear
bound on the filling diameter for curves (which is the same thing as filling
radius in this case). Thus the Gersten combing insures FoR(¢) ~ £ for k = 1.
One may hope for similar results for filling invariants of k-cycles for £ > 2
and then try to construct combings for specific spaces.

Conjecture. Every connected Lie group X is Gersten combable.

Frample. (Compare [Bri].} Let X admit a split extension ] - A —+ X —
Xo — 1 where A = R™ and X is combable (e.g. Abelian). Then X is
combable,

Proof. Fix a section Xy — X and Lipschitz contract X to X, by azo — (ta)zo

for the usual similarity transformations a ~ ta, t € [0,1],in A = R™. Then
compose this contraction with the combing in X;.

(f) Filling volume in nilpotent groups. Let us try to guess the behavior of the
filling volume function FV;,1(¢) for the Heisenberg group H2*+!. We grade
the Lie algebra of H*"*! by L (H?***!) = Cntr @ To and we denote by e, the
dilation of H*"*! which acts on L (H™*1) by (c,t) = (A%c, At). Observe that
ey preserves the (codimension one) subbundle T C T (H?"+') corresponding
to Tp which defines a Carnot-Caratheodory geometry on H?"+!,

There are three different cases for the filling problems of k-dimensional cycles
¥ C H?*+! by k-chains depending on whether k¥ < n, k = n or k > n about
which we make the following

Conjecture:

(1) If k < n then the filling volume has Euclidean behavior,
FVi(£) ~ €.

{ii) If k¥ = n then the filling is harder than in the Euclidean space i.e. the
filling volume function grows faster,

FVi(8) ~ F.
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(iii) If & > n then the filling is better than Euclidean

FVen(O) ~ 034,

Ezplanation. Let Ey = e, (Eq) for a fixed £ and A — oo. If £y is tangent to
T then Vol Iy ~ A¥; otherwise Vol £y ~ A*t1. If k < n, and X, is tangent
to T, we can fill in £y by a Cp tangent to T and then X, is filled in by C,
with Volyyy C\ ~ A**+! which agrees with (i).

If £ = n, then we still may have ¥, tangent to T but no (k + 1)-dimensional
chain Cp can be tangent to T. Thus Vol E, ~ AF and Vol C\ ~ A¥*? which
agrees with (ii).

Finally, if £ > n, none of the two, neither £y nor Cy, can be tangent to T

and so
Vol By ~ A1 Vol 0y ~ AK#2,

which fits (iii).

Remarks. We already know the proof in the case k¥ = 1 (see 5.A3) and our
argument can probably be adjusted to the general case. Also we know that
the conjecture is valid for k¥ = 2n by the Pansu-Varopoulos theorem. Here
we are going to indicate a proof of the lower bound for the middle case k =n
using the argument in 5.B;. We invoke the homomorphism k : H"#! _,
R?" = H*+1/Cntr and recall that R?™ carries a non-singular anti-symmetric
2-form w whose lift A*(w) on H?*+! integrates to a differential 1-form, a,
i.e. da = h*(w), such that Kera = T. We take a pair of transversal n-
dimensional linear subspaces Ly and L, in R* such that w|L; =0, i =0, ],
and then we construct Ly C H?"+' tangent to T such that the h-image of
T, is contained in Lo and such that 2~' (L;) C H?"*' meets ¥, transversally
at exactly two points. (The construction of ¥, which is a Legendre variety
for the contact form a, is an clementary exercise, compare [Gro]i2.) Now
we expand by A — oo, i.e. take Xy = €, (Xq), and bound the filling volume
from below by ~ A*¥+2 by looking at the intersection of I with translates of
L) = ™Y (L,). Then we may apply 5.B, since L, is an Abelian subgroup in
H™+! (as w|L; = 0) and it is quadratically (on ) distorted in H®*+'. (We
suggest the reader would fill in the details.)

As a corollary of the above “hyper-Euclidean™ lower bound on FV;y, we
obtain that H¥"*! admits no combing in the sense of [E-C-H-P-T]. (This
might be known to the anthors of [E-C-H-P-T].)

The above heuristics generalize to all nilpotent Lie groups X (compare 5.As,
where we discuss the case £ = 1) but the proofs are non-existent yet. For
example, in order to locate the first “non-Euclidean” function FViy,(€) we
take T C T(X) corresponding to the splitting L = [L,L] @ T, of the Lie
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algebra L of X and let ko be the maximal dimension of submanifolds in
X tangent to T. Then one believes that FViy,(f) ~ ' for k < ko and
FVin(£) ~ £ for k = k.

Similar results are expected for other filling invariants, for example, for the
filling span function where the proof must be easier. Here, “filling span”
refers to the following problem. Given an {-Lipschitz map f of the unit
sphere S* = dB**! into X, find an #-Lipschitz extension of f to the ball for
the smallest possible #. Then the filling span function FySi41(f) provides
(the best possible) bound # < FoS},+] (l).

If the above subbundle T' complementary to [L, L] contains “many” (k + 1)-
dimensional submanifolds in the sense that the corresponding differential op-
erator is infinitesimally invertible (see 5.A3) then one can use the techniques
of 5.A; and show that FoSiy () ~ £. (Notice that the infinitesimal invert-
ibility is a verifiable, albeit complicated, linear algebraic condition on the Lie
algebra L.) On the other hand, ore can, probably, bound FSi4, from below
either by intersecting Ty = f(S*) C X with submanifolds of the comple-
mentary dimension (as we did to bound from below Fill Vol,,) or by a limit
argument exploiting the fact that Cons X is a Carnot-Caratheodory space
determined by T. For example, if X is the Heisenberg group H*"*!, the
intersection with h~' (L) suggests the lower quadratic bound in the middle
dimension k = n, i.e.
FSin() 2 22

(notice that FSi4)(£) < € for all nilpotent groups of nilpotency degree two
as is seen with the combing given by the dilation), while the lower bound
which (obviously) follows from FVi,,(¢) ~ s significantly weaker,
FSen(6) 2 18
{I do not know where in the interval [:—ﬁ, 2] the truth is located.)
Now, let us explain the limit argument, assuming, to make the life easier, that
we have a dilation on X. If we start with a Lipschitz image £y = f(S*) C X
which is almost everywhere tangent to T and assume that the scaled map
fi=-erof:S* - X extends to a A-Lipschitz map ¢’ : B*' — X for
X ~ ), then the rescaled back maps ¢} = e;! o g subconverge, for A — oo,
to a Lipschitz extension of f : §¥ — X to a map ¢ : B*! — X which is,
moreover, Lipschitz for the Carnot-Caratheodory metric associated to T. One
knows (the proof is elementary) that such a g is almost everywhere tangent to
T and one believes this is as restrictive a property as having a smooth (k +1)-
manifold tangent to T. Thus one could arrive at an effective condition which
would guarantee the (lower bound) relation

l“FSH.(l) 7 ;? -
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Ezample. The Heisenberg group. If a Lipschitz map g : B! — H™h
is a.e. tangent to T, then the (contact) 1-form a defining T by Kera = T
obviously satisfies ¢°(a) = 0 a.e. Since the pull-back operator g* on exterior
forms commutes with the exterior differential (see Ezplanation below) the
differential da is also pull-backed to a.e. zero form, and since the maximaj
isotropic subspaces of da are n-dimensional, the map ¢ has rank < n ae
Thus, for X = H™+!, we have arrived at yet another proof of the relation
LS (£) — o0, for £ — oo,

Remark. The above argument extends with a little effort to FVi41(£), where
the limit object is a rectifiable current which is a.e. tangent to T'.

Ezplanation. The commuting of d with ¢* is standard for C*-maps. Then,
using smoothing operators, one can approximate a Lipschitz map g by C>.
maps g;, such that g; uniformly convergeto g fori — oo and Dg; — Dg almost
everywhere. Then the induced forms g?(da) weakly converge (as currents) to
¢°(da) which implies the required commuting property.

Generalization. For every subbundle T C T(X) one defines the curvature
form 9 : A*T — T(X)/T by Q(n1, ) = [11,72}/T. One can easily show, that
if g : B — X is a Lipschitz map tangent to T then ¢*(Q) = 0 and then bound
rank of g by the maximum of the dimensions of Q-isotropic subspaces. We
invite the reader to work out the case of the quaternionic Heisenberg group
H*"*+3 and obtain lower bounds for FS and FV.

(6) Insuffictency of examples. To the best of my knowledge, there are no
examples of groups I' which are k-connected on the large scale and which have
“very large” filling invariants for k£ > 2, but I am pretty certain such examples
must be plentiful. For instance, certain I should harbour k-dimensional cycles
(lying in some thickening of I') whose filling volume admits no recursive bound
in terms of the volume (compare fi(r) for k > 2 in 4.D).

5.E. Top-dimensional isoperimetric problems. There are two such
problems. The first is a specialization of the above to (k + 1)-dimensional k-
connected polyhedra X where we look for the best fillings of k-dimensional cy-
cles. The second problem is non-homological in nature. We consider bounded
domains in X and want to relate their volumes to those of their topologi-
cal boundaries. (Notice that the two problems are equivalent for (k + 1)-
dimensional manifolds X.) Here we want to say a couple of words about
the second problem. This can be formulated in purely group theoretic terms
using the notion of the boundary d,F for subsets F C T (see 0.5.A), for some
fixed d, say for d = 1. Namely, one considers in I' the subsets F containing
exactly N elements and defines the function Is(N), called the isoperimetric
profile of T, as the infimum of cardd4F over all these F. Recall that the linear
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asymptotics Is(N) ~ N characterizes non-amenable groups and the degree of
amenability can be measured by the decay of the ratio Is(N)/N for N — oo.

Ezamples. (a) If T' = Z" then
Is(N) ~ N,

as everybody knows.

(b) If T is a nilpotent group then Is(N) ~ Nm—;l, where rn is the Hausdorff
dimension of the asymptotic cone Cong, I'. This result was first proved ge-
ometrically by Pansu in his thesis for the 3-dimensional Heisenberg group
(see [Pan}];). Then Varopoulos obtained the gencral result by the techniques
of random walks in I (see [Var], [V-S-C] and references therein). One also
can prove this geometrically by extending the techniques from [Gro]; (in the
abstract dressing of [Groly7) to Carnot-Caratheodory spaces.

(c) i I' has exponential growth, then
Is(N) 2 N(log N)72.

(See [Var], where the reader will find much more about 1s(N).)

5.F. Filling on the scale ~ £ for £ = length §. One knows that the linear
isoperimetric inequality in X, i.e. the property FoA(£) ~ ¢, is equivalent to
a certain metric inequality (expressing é-hyperbolicity, see [Gro),4) concern-
ing the quadruples of points in X. Now we want to relate the polynomial
isoperimetry FoA(€) ~ £ (and especially the quadratic case Fp A(€) ~ £2) to
metric inequalities concerning finite configuration of points in X.

Denote by Sk the standard regular k-gon in the plane and define a k-gon §
in X as a map of the set of the vertices of S into X. (If X is a geodesic
space, we can extend the map to the boundary curve @5, by joining the
adjacent vertices in X by minimal geodesic segments and thus obtain an
actual closed curve in X.) We call the edges or sides of S the pairs of points
in X corresponding to the pairs of vertices in S; joined by edges. The length
of an edge is the distance between the corresponding points. The length of S
is the sum of the lengths of the edges.

A partition Il of S is a combinatorial partition of 5 into k,-gons, g = 1,..., v,
(where each of them should be homeomorphic to the disk as in Fig. 15, where
the hexagon is partitioned into 5 pieces), and a map of the set of the vertices
of this partition into X.
We denote by ¢,,...,4, the lengths of the resulting u-gonsin X, u=1,...,v
and set

Mesh [T =maxé, .

p=l,v
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Fig. 15

Now we can state the following

Combinatorial filling problem. Find a partition IT of S into a given number
v of “pieces” with the minimal possible Mesh II.

We denote this minimal (or rather infimal, as usual) Mesh by Fill, Mesh(S).

Remark. There are other filling measures of S via II which resemble the area
somewhat better than Mesh. For example, the sum of the squared lengths,

Z": € looks the best combinatorial approximation for the area in Euclidean
p=1

spaces. But we have cliosen Mesh which is better suited to localize the ideas.
Now with Fill Mesh at hand we follow our route and define the filling function
FM(€|k,v) as the supremum of Fill, Mesh S over all k-gons of length < €.

Remark. Our subdivisions of S into v “pieces” may have, a priori, arbitrarily
many vertices. But in fact one can always “erase” most of the vertices without
increasing £,,. Thus one may assume that the competing partitions II have
no more than N vertices for N bounded by something like k 4+ v. Thus the
function FM({|k,v) can be computed by looking at the N-tuples of points
in X.

Corollary. The number FM(€|k,v), for every fized triple (¢,k,v), is con-
tinuous under Hausdorff limits of metric spaces. In particular, the functions
FM(Lk,v) for the cones Con, X determine the asymptotics of FM(€|k,v)
for X as € — oo as follows: if every asymptotic cone Con, X has F M bounded
by a function B(L,k,v) independent of w, then

limsup £ FM(¢|k,v) < B(¢, k,v).
{—o0

(We shall see in 5.F) that just vanishing of x, (Con,, X) gives a non-trivial
bound on FM(£/k,v).)
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Suppressing k. Let us define FM({|v) as sup FM({|k,v) overallk =1, 2, ...
k

The new function F M without k carries essentially the same amount of in-
formation as F'M with k and it looks prettier without k. For example, it
satisfies the following

Composition inequality.
FM (thavy) < FM(FM(tw)|vs). (%)

This is obvious from the definitions, and this inequality takes an even more
transparent form if we measare the refinement effect of subdivisions into »
picces by €' FM(€|v) and define

M(v) =inf €' FM(€ly).

Then (*) obviously implies that

M (1v2) 2 M (n) M (1a). (*%)

5.F,. FillMesh and Fillo Area. In what follows, we assume, to avoid
irrelevant complications, that our space X has bounded local geometry. The
basic example is where X is a locally finite simply connected polyhedron
admitting a cocompact action of a discrete group. In this case there is the
following obvious relation between Fill Mesh and Fillo Area. Take some é > 0
and let FoA(£|6) be the minimal number v, such tbat FM(¢|k,v) < 6 for all k
satisfying k < /6. ‘Then, for every fixed 8, the function FoA{{|8) is equivalent
to the (filling area) function FoA(£), (i.e. the ratio of the two is bounded by
a constant as £ — oo).

The above equivalence is not interesting by itself for our purpose as it needs
v =+ 0o for £ — oo. But it becomes useful in conjugation with the above

(%),

5.F,. Let M(v) > 1 for some v and set a = logv/log M. Then the filling
area function of X is polynomial, namely,

FA(L) < 6. (+)

Proof. Let p be the maximal integer < log,, £. Then, by (**), every S in X
can be subdivided into v* pieces of roughly unit size and so

Fillo Area § < v%,

which implies (+).
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5.F;. Corollary. Suppose that for every ultrafilter w the asymptotic con,
Con, X is simply connected. Then X satisfies a polynomial isoperimetric
inequality (i.e. the above (+)).

Proof. 1f x (Con,, X) = 0, then for every k =1,... , thereexist £, > 0, v =
v(k) = 1,..., and A = A(k) < 1, such that every k-gon in X of length
£ > £ can be subdivided into v-pieces of length < M. Otherwise we would
have a sequence of closed curves in X of length £ — oo converging to a
non-contractible curve in some Con, X. (To avoid irrelevant complications
we assume throughout that X is simply connected and admits a discrete
cocompact group action.) This makes M(v) > 1 for large v and the above
applies.

5.F3. Open problems. In order to complete the above discussion one should
find some bounds on KM in terms of FoA. Here is the easiest question which
is still unresolved. Suppose X satisfies the quadratic isoperimetric inequality,
i.e. FoA(f) < 6. 1s then M(v) > 1 for some v? (We assume as usual, X is
simply connected with bounded local geornetry.) It is natural to conjecture
that

RASE > liminf (log»/log M) < 2.

This means, geometrically, that a disk D with some Riemannian metric of
area A (and witb the length of the boundary about v/A) can be subdivided
into v pieces of perimeter & A/\/v. Notice, that one may additionally assume
that every ball in D of radius r < £ has area 2r? (see [Gro]1p). This allows
one to produce coverings of D by v balls of radii < A/\/v but this fails short
of our aim. The above discussion suggests that a converse to 5.F] should be
true. That is, if a group T satisfies a quadratic (or may be even higher degree
polynomial) isoperimetric inequality then Cony, I’ is, conjecturally, simply
connected.

5.F;. The fundamental group of X as seen from infinitely far and
related invariants. Let us join our observer from §2 who looks at a metric
space X froin an observation point positioned distance d from X. Now, for
cach d, the observer collects a certain finite amount of information about the
loops in X of length about d and their homotopies on the scale comparable
to d and then as X rccedes for d — oo this information is organized (pos-
sibly with the help of an ultrafilter) into an actual group. For example, if
one regards trivial the loops with quadratic filling area, then the resulting
group is (in the general case, conjecturally) just x; (Cone, X). But this is
not the only possibility! One can factor away another class of loops with a
given bound for d — oo of a specific filling invariaut and thus obtain a quite
different “asymptotic x,” of X. Then one may play this game with the higher
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dimensional homotopy and homology. Unfortunately, at the present stage of
knowledge it is unclear how to select truly interesting invariants out of the
inaumerable possibilities and then to evaluate tbem for specific spaces and

groups.

5.G. Volume distortion of subspaces X, C X. We introduced the (or-
dinary) distortion of Xp in X by comparing distx, and distx on the pairs
of points in Xo. Now, instead of pairs of points consider a space S of closed
subinanifolds (or cycles) in X, of a certain kind. For example $ may con-
sist of all (images of) maps of the circle S! into X,. We specify some filling
invariant for our submanifolds, for example, the filling area for circles and
consider two functions on S, that are

F(8) = Fill Tnvx(S)

and
Fo(S) = Fill Invy,(S)

for all S € S. Then we define the F-distortion FD(€) of X, in X by

FD(2) =sup F(S),
SesS,

where S; C S consists of all § € § with Fp(S) < £. Here as usual, our
attention is fixed not so much on the function FD(¢) itself but rather on
the asymptotics for £ — oo, (e.g. expressed by the equivalence a(f) ~ b(¢)
signifying a(€) < cb(€) and b(€) < ca(€) for a fixed ¢ > 0).

Warning. The above definition recaptures the distortion of §3 if we use the
space S of the pairs of points in X, and use for F' the length of the shortest
curve between the points. However our “normalization” here differs from that
in §2 as the function F'D(€) represents the inverse function for Ais(R) in §3.

Ezample. Look again at the three dimensional solvable group X, = Sol; with
A > 0and A; <0 embedded into X = H? x H? (where }H? is the hyperbolic
plane identified with Sol,). We know, the ordinary distortion of this X, is
pounded (see §3). Now, we take S consisting of closed curves in X, and let F
be the filling area (i.e. the area of the minimal surfaces filling in our curves).
Then the corresponding F-distortion is ezponential

FD() ~log!

for & fized ¢ > 0, because the filling arca is quadratic in our X and exponential
in Xo. (We say “exponential” rather than “logarithmic” to make clear that
the distortion is gnite large and to be in agreement with the terminology of

3.
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Now, for the same X and X, take the space of all closed surfaces (2—cycle.)
Zin X, for S and let F be the filling volume.

Claim. If A, # —); then the F-distortion is bounded, i.e. FD(€) ~ {. Oth-
erwise it is unbounded but yet quite small, say

FD({) 2 & for everya < 1.

Proof. If A; #£ — A3, then the group X, is not unimodular and so the boundary
¥ of every domain D C X has

Area ¥ > const Vol D,

which shows FD(£) ~ £ in this case.

Now assume A; = —A; and so Xj is unimodular. Since X, is amenable, it
admits (Folner) domains D (of arbitrarily large volume) for which the ratio
Vol D/ AreadD is arbitrarily large. This makes the distortion unbounded
(which with our perverse convention means FD(£)/¢ — 0 for £ — o0o) since
X = H? x H? satisfies linear isoperimetry for 3-dimensional fillings. Finally,
to prove the bound FD(£) 2 £* we use the result by Varopoulos (see 5.E)
claiming that X, satisfies “almost linear” isoperimetric inequality in dimen-
sion 3.

A bound on FD. Let us indicate how to bound the distortion (i.e. bound
FD(¢) from below) for certain hypersurfaces Xo C X. We assume both X
and X, are smooth Riemannian manifolds where X has (uniformly) bounded
local geometry and X, has (uniformly) bounded local extrinsic geometry in
X which amounts to a bound on the second fundamental (curvature) form
of Xo C X and the normal injectivity radius of Xy in X. Notice, that these
assumptions are satisfied if X and X, are Riemannian homogeneous spaces
(as for example Soly C H? x H?).

Claim. If for some k the filling volume for X and the volume distortion of
Xo in X are at most polynomial then so is the filling volume in X,. (Thus
a lower polynomial bound on the filling volume in X; lcads to such a bound
for the volume distortion, i.e. FD(€) 2 £ for some a > 0.)

Sketch of the proof. Take some k-cycle ¥ C Xy and fill it in by a minimal
k-chain C in X. Now we want to find a filling chain Co C Xo whose volume
is polynomially controlled by Vol, ) C. To do this we slightly normally make
Xo to a near “parallel” hypersurface X, such that Vol,(C' N Xg) < Vol C.
(Compare (c) in (5) of 5.D.) Then the intersection ¥’ = C N X} is normally
projected to X, where it bounds some C’ of the volume polynomially con-
trolled by VolX'. What remains to do is to join £ and X’ by a small chain
in Xo. We use for this the normal projection to Xj of the part of C lying
between ¥ and Y.
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Questions. (a) Let Xp be a connected subgroup in a Lie group X, such
that their filling invariants in certain dimension k 4+ 1 > 2 have the same
;symptotic,

Fx Vig1(£) ~ Fx, Vi ().

Is then the corresponding F-distortion of Xp in X bounded (i.e. FD(£) ~ £)?

Warning. If a (filling) function f(£) is said to grow ezponentially then it does
not have to be necessarily equivalent to any expcf in our technical sense
dictating ciexpcl < f(€) < cyexp c£. We rather mean log f(£) ~ ¢ which
is a significantly less binding relation. (The fine equivalence f(¢) ~ expct
for our geometric functions is a subtle matter which is at no point discussed
in this paper.) With this in mind one should not take the above equivalence
between Fx andFx, on the face value when the functions grow faster than
polynomially.

5.G;. Volume expansion and contraction for retractions. We saw in
§3 that the distortion of Xo C X can be measured by Lipschitz constants (or
functions depending on the distance to Xp) of retractions X — X,. First we
observe, that the volume distortions provide lower bounds on these Lipschitz
constants as well as the distance distortion. For example, now we have an
alternative way to see that H? x H? does not Lipschitz retract onto Soly in
there. Actually, if this Sol; has A; = --A; we have two obstructions, one
for the area and another for the volume. The second obstruction associated
to the volume can be seen yet from another angle. Recall that Sol, sits as
a convex horosphere Ho in X = H? x H? and if we move it inward by the
normal displacement the volume element exponentially decays with ¢t — oo.
Now, if we have domains Doy C Hp with large volume and with relatively small
boundary 8Dy, i.e. with Area@Dy/ Vol Dy < ¢ for small ¢ — 0, they move to
much smaller domains, say Dy C I, t <0, with Vol D, = (exp —t) Vol D. If
we add such a D; with the t-collar in X over @Dy, we obtain a filling of 3D,
by a new chain of the volume bounded by

(exp —t) Vol Do + t Area@Dy < ((exp —t) + te) Vol Do,

which becomes arbitrarily small compared to Vol D, for € =+ 0, ¢t — oo if we
make te — 0.

The key point of the above discussion (besides the existence of Do with rel-
atively small 3Dp) is the exponential (3-dimensional) volume expansion of
the normal projection of the horoball H* bounded by Hy onto Hp. In fact
we know a posteriori, that every retraction of H* to Hy = dH* must have
unbounded volume distortion, i.e. the differential of such a retraction on the
exterior power A% T(H+) must be unbounded.
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It seems, in general, an interesting problem to find, for a given Riemanniag
homogeneous pair X and X, C X, a (possibly Go-equivariaat for the isometry
group of the pair (X, Xo)) retraction p: X — X, with the smallest possible
norm ||D,| A¥*! T(X)|| thought of as a function of d = dist(z, Xo). This
problem (as well as the whole of the volume distortion story) extends to
arbitrary finitely generated subgroups in finitely generated groups (at least if
these are k-connected on the large scale) but nothing of substance is known
in this generality in order to suggest a meaningful question.

On the other hand, one may try to extend our study of Ho = Sols C X = H2x
H? to the horospheres in general spaces with non-positive curvature. How
much are such horospheres lengthwise and/or volumewise distorted? When
they admit (Folner) exhaustions by domains D with Vol D/ Vol 8D — oo,
etc.
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6. Semi-Hyperbolic Spaces

K < 0 and semi-hyperbolicity; coning and combing; rank and geometry of
flats; Tits boundary and Morse landscape at infinity; minimal surfaces and
norms on homology; group actions with K < 0; semi-hyperbolic constructions
and generalizations.

We start this section with a little propaganda for groups acting on spaces
with K < 0 and then we explain the difficulties in globalizing the conception
of non-positive curvature to a notion of semi-hyperbolicity.

6.A. Examples of KX < 0. A geodesic space has K < 0 if the distance
function there is more convex than that on R? in the sense of CAT (see
[Gro]14, [Gh-Ha], [C-D-P)). This includes Riemannian manifolds with the
seclional curvature K < 0. Another clementary example is provided by 2-
dimensional simplicial polyhedra X satisfying tbe 3-condition: X contains no
subpolyhedron isomorphic to the cone over a closed polygon with less than
six edges (i.e. pentagon, quadrangle or triangle).

One may think of K < 0 as the limit case of the negative curvature condition
K < 0 and regard (groups acting on) spaces X with K(X) < 0 as rare
and exotic species corupared to hyperbolic groups and spaces corresponding
(morally rather than factually at the present state of knowledge) to K < 0.
This point of view is justified in the local differential geometry as the curvature
tensors with K < 0 are open and dense amnong those with K < 0. But on
the glohal scale there is no (known) way of approximating K <0 by K <0,
although mnany geometric properties of groups and spaces with K < 0 do lie
on the boundary of those with K < 0.

This situation in geometry is vaguely similar to what we see in tlie combina-
torial group theory where groups appear as “developments™ of their presen-
tation, which are, unlike groups themselves, finite objects playing the role of
“local” and “infinitesimal” in geometry. Here again the non-strict negativity
of combinatorial curvature expresscd, for example, by the i-condition, may
look rather special compared to K < 0 expressed by 1/n, n > 7, but this
point of view is by far less compelling here than in the case of the curva-
turc tensors. For example, there are, I suspect, some natural combinatorial
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schemes of enumerating (finite) polyhedra, such that “K < 0” has infinitely
smaller density of occurrence than “K < 0" (never mind that in another set.
ting the hyperbolic groups are the ones who turn up with probability one). I
fact, there are certain (essentially local) combinatorial constructions which
lead to spaces (and groups acting upon them) with K < 0 where the strict
negativity is a rare exception. We mean, first of all, Davis’ polyhedral realiza-
tion of reflection groups, where K < 0 is actually impossible above a certaip
dimension. (See [Dav}, 2, [Vin}y,2, [Mou) and beware of an erroneous claim to
the contrary in [Gros.)

Another construction which excludes K < 0 is the Cartesian product of spaces
(and groups): even if both X; and X; have K < 0 we only may claim
K(X, x X3) £ 0 and there are serious obstructions to make the curvature
strictly negative.

But what, in our opinion, brings K < 0 on a par with K < 0 is the following
list of beautiful geometric spaces with K < 0 which are acted upon by a
variety of remarkable groups.

1. Symmetric spaces X of non-compact type. Here the strictly negative cur-
vature K < 0 is relatively rare as it corresponds to the condition rank X =1.
An especially important example of a symmetric space is X = SL,R/SO,
as every discrete linear group discretely and isometrically acts on such X,
Notice that this space has rank X = n —1 and so the curvature is non-strictly
negative apart from the case of the hyperbolic plane H? = SL,R/SO;.

I1. Euclidean buildings X of Bruhat-Tits. These are combinatorial counter-
parts to symmetric spaces. For dimX = 1 they are just certain trees (and
hence hyperbolic) but for dim X > 2 they have non-strictly negative curva-
ture. The groups which act here are, for example, subgroups in SL,Q, and
in the linear groups over more general fields with non-Archimedean norms.

11, Infinite dimensional symmetric spaces and buildings. The standard con-
structions of classical syinmetric spaces (and, probably, of buildings) can be
extended (usually in several ways) to the infinite dimension. For example,
the space X,, = SL,R/SO(n) becomes

Xeo = GLoo/O(00) x R,

where G L, is the group of invertible bounded operators on the Hilbert space
R*, and O(oo) consists of the orthogonal (unitary) operators, while R* acts
by multiplication hy scalars. One can identify this X,, with projectivized
spacc of Hilbert norms on R® equivalent to the Hilbert structure norm.

The space X, besides being non-Riemannian, appears too large for many
geometric purposes. For example, it has infinite rank. Qur next example
looks more manageable.
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Let O(p,0) C GLo consist of the operators preserving the form — Z’: I 4
i=x]
72,417 (where the structure form on R* is § z?). The corresponding
=1

Riemannian symmetric space
X = O(p, 00)/O(p) x O(c0)

bas K < 0 and rank = p. If p =1 this is the infinite dimensional hyperbolic
space H{* of constant negative curvature and for p > 2 our X has non-strictly
negative curvature.

The spaces like this X look as cute and sexy to me as their finite dimensional
siblings but they have been for years shamefully neglected by geometers and
algebraists alike. The questions which interest us most (in this paper) about
such spaces concern discrete isometry groups I" acting on them where the word
“discrete” requires an explanation. Namely, we do not care much for actions
kecping fixed some point z4 € X, as these come from unitary representation
of groups. So, the very least we require of T is to have unbounded orbits
and the strongest discreteness condition is boundedness of distortion for T
embedded in X as an orbit. In fact we can require even more in this regard,
the existence of a large-scale Lipschitz retraction of X onto I’ identified with
some orbit in X. Notice that in both definitions we assume [ is finitely
generated and we refer to a word metric in T’ when we speak of “distortion”,
“Lipschitz” etc. Another important notion is that of strict unboundedness of
an action where the intersection of every orbit with each bounded subset in
X is finite (or precompact if we allow locally compact groups I" acting on X).

Ezamples. (a) Let T be an amalgamated product Ty =5 I';, where A has
index at least three in I, and I';. Then T’ admits an unbounded action on
H= which is obtained by “gluing together” the (bounded) actions of I'; and
I; on H* corresponding to the regular representations of I'y and ;. (We
suggest to the reader to work out this construction by himself.)

(b) Every tree T can be embedded into H>, such that the automorphism
group of T" acts strictly coboundedly on H*.

(c) Conjecture. For every p = 1, 2, ..., there exists a discrete (according
to one of the above definitions) finitely generated group I' acting on X4,
corresponding to O(p + 1, 00), which, however, admits no strictly unbounded
action on X,. In fact, a lattice [ in a simple finite dimensional Lie group of R-
rank > p + 1, probably, cannot discretely act on X, or on other “reasonable”
infinite dimensional symmetric spaces of rank < p. (It is obvious that a lattice
I of rank > p+1 cannot have any action on X, with bounded distortion since
X, admits no R"*! inside itself with bounded distortion.)

The above conjecture is justified by what we know about the case of X, = H®
where there is a variety of restrictions on I'. For example, using harmonic
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maps into X; and Bochner-Siu-Sampson formula for K¢ < 0 (see (Gro},,,
[Gr-Sch]), one can show that if T is a cocompact irreducible discrete isometry
group of a symmetric Hermitian space of rank > 2, then every isometric
action of ' on X; = H> has bounded orbits. This is similar to Margulig’
superrigidity theorem.

IV. The spaces of metrics and subgroups in Diff. Let V be a compact smooth
manifold. Then the space of the Riemannian metrics on V with a fixed volume
element () can be made into an infinite dimensional Riemannian space with
K < 0 with an isometric action of Diff (V, ). This, we hope, should aid us ig
the study of Diff and subgroups in Diff but nothing concrete is known in this
direction (compare [Gr-)’A]). If we do not like 2, we may use the space of
conformal structures on V instead of the Riemannian metrics. On the other
hand if we allow an invariant symplectic form w we may restrict to the metrics
agreeable with w which constitute an infinite dimensional Hermitian space
with K < 0. All this looks nice and pretty but no consequence has followed
so far. (It may be not quite just to say so because there is a sequence of
remarkable papers by Zimmer starting from [Zim], concerning Diff-action of
lattices, where the negative sign of the curvature in the space of metrics plays
an important role though it never comes into the open.)

8.B. Large-scale effects of K < 0. Let X be a simply connected geodesic
space with K < 0. The basic feature of X is the uniqueness of the geodesic
segment between every two points z) and z; in X. We agrec to parametrize
the segment by {0, 1] proportional to length and write tz + (1 — t)y for the
points on this segment corresponding to ¢t € [0,1]. The map defined by the
conver combination (z,y,t) — tz + (1 — t)y is denoted

CC: X xXx[0,1 - X.

Remark. For reasonable (e.g. polyhedral) spaces the existence of a C'C-like
map is equivalent to contractibility. Moreover, if such a space comes along
with a discrete group action, then one can find an equivariant CC-map. But
if K <0 then, as we shall see presently, the map CC enjoys extra geometric
properties.

Another essential feature of K < 0 is the convezity of the distance function
and most properties of manifolds with K < 0 (and of groups acting of such
manifolds) follow (or should follow) from this convexity (see (Gro]s). For ex-
ample, one can divide individual isometries v of X into elliptic, parabolic and
quasi-hyperbolic and easily show (e.g. see [Gro]s) that « is quasi-hyperbolic if
and only if the cyclic subgroup {7'} has bounded distortion in X. In particu-
lar if T" is a discrete isometry group whose all isometries are quasi-hyperbolic
(e.g- I has no torsion and X/T' is compact) then every cyclic subgroup in
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I has bounded distortion. (This property has been given different names
in different papers. It is “no asymptotic torsion” in [Gro]s, “no algebraic
parabolic” in [B-G-S), and “non-zero translation numbers” in [Ge-Shjs and
[A-B].)

The convexity of dist can be formulated in terms of CC as follows. Let
=tz + (l —t)y,', i=1, 2. Then

dist(z, z2) < ¢ dist(z1, 22) + (1 — t) dist(y1, ¥3). (*)

Bicombing. Tt was suggested in [A-B] that the large-distance rendition of
CC, called a bounded quasi-geodesic bicombing, is a good candidate for sem:-
hyperbolicity. A bicombing is a map

BC: X xXx[0,1] = X
for which there exist constants A > 1 and d > 0 such that
dist(zy, z2) < A(t dist(zy, z2) + (1 — ¢) dist(y1,y2)) + d (*+)

for all zy, z3, 1, y2in X, t €[0,1] and z; = tz; 4+ (1 — t)y;.
A bicombing is (Lipschitz) bounded if

dist(thyz + (1 — )y, taz + (1 — ta)y) < Aty — o] dist(z,y) =d, (*+)
and a bounded bicombing is called quasi-geodesic if
dist(z), z3) > /\_'[dist(zl,:g) —ty dist(zy,1n) — t2 dist(z2,y2)) — d

where z; = t;z; + (1 — t)yi. (The definitions in [A-B] are shaped slightly
differently. Also observe that “bounded” for C'C is obvious and the quasi-
geodesic property follows from (#) and the triangle inequality but it does not
formally follow from (++) and (*+).) Alonso and Bridson, and also Short,
put forth serious evidence for the fact that an equivariant b.q.-g. bicombing
on X (with a group T acting on X) imposes on X and T strong conditions
comparable to those associated to K < 0, see [A-B]. In particular, they
claim in [A-B] that the bounded distortion property of {7’} extends to their
semi-hyperbolic groups I (i.e. groups with an F-invariant bicomnbing) by a
generalization of an argument of {Ge-Sh]y, where this had been done for bi-
antornatic groups.

Another situation where BC serves almost as well as CC for K < 0 is in
taking (rough) convex combinations of equivariant maps. To be geonetric,
let V be a comnpact Riemannian manifold with equivariantly bicombable I' =
m(V) and let us look at the Morse landscape of the space M of maps f :
W — V for another manifold W, where we assume that dimW < kand V is
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k-connected. We claim that every connected component of M has only oge
deep basin for the Lipschitz constant £ = ¢(f). Namely, every two £-Lipschit;
maps fy and f; W — V can be joined by a homotopy of £-Lipschitz map,
for & < C¢ for some_constant C = C(V, W) In fa,ct fi and f; lift to the
universal covering of V of V, say to maps f. WV, i=1, 2 where W
the covering of W corresponding to the image of IV = (W)in T = rl(Vl.
Then BC gives us an equivariant Lipschitz “homotopy” fy = tfi + (1 — t)f;
which then can be easily modified to an actual homotopy. It follows, that the
conjugacy problem for homomorphisms IY — T is solvable (compare [A-B}).

6.B,. Iterated CC and BC and small simplices. By iterating CC
(or BC) one obtains a “convex combination” of (k + 1)-points zo,...,z; in
X by first joining zo and x,; by the edge tzo + (1 — t)zy, t € [0,1], then
joining z; with the points on {tzo + (1 — t)z,} etc. We write the result as

K
PoZo + P1Z1 + . - - + pixy for arbitrary p; > 0 with ¥ p;.
i=0

Warning. The above “sum” of weighted points z; is, in general, non-commu-
tative though it is commutative for k = 1.

The operation (z;,p;) — L p;iZ; can be thought of as a map
CCi: X* x A* 5 X,
and one similarly defines

BC, : X* x A 5 X,

k
where A* = {p.- >0 | hgop'- = 1}

The inequalities (*) and (**) show that every simplex spanned by some point
Z, is roughly smaller than the corresponding Euclidean simplex spanned by
points z; € R* with mutual distances comparable to those between z;. This
immediately implies (compare [Grols) the following

Corollary. If T is BC, then every cohomology class h € H*(T';R) has poly-
nomial growth.

In fact h can be represented by a cochain ¢, such that

x
(Y0, - --»vi) < const H distr (7, vi-1)-
=1

Remark and comments. (a) Generalizations. This corollary remains (obvi-
ously) valid for combable groups in the sense of [E-C-H-P-T]. In fact one
needs even less than that, something like “polynomially Lipschitz” combing
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where the cone over a subset of size d is bounded by @*. For example, this
property is satisfied by the nilpotent Lie groups with the coning by (seg-
ments between points of) one-parameter subgroups (this, in general, is not
even combing in the Gersten sense, it seems). This suggests generalized comb-
ings ot conings over a point To € X, which are homotopies of X shrinking
X to zo (a8 (z,t) — (1 — ¢)zo + tz) with a certain control on the Lipschitz
constant of such a coning C : X x [0,1] — X on the ball of radius R in
X x [0,1] around (X, % 0). (For discrete spaces and groups one should take
extra care to “large-scale” such a definition to have discontinuous but yet
Lipschitz controlled homotopies, This is slightly more delicate here than for
the usual combing where the Lipschitz constant is bounded.) As we men-
tioned above, nilpotent Lie groups have polynomially Lipschitz conings and
this extends by a proper “large-scaling” to discrete nilpotent groups.

The subgroups in SL, have exponential coning arising from the geodesic
coning in X = SL,/SO(n) via an exponential Lipschitz retraction (see §3;
probably it is easy to extend to all Lie groups as the typical non-linear group,
the universal covering of SL;R, is combable).

(b} Novikov conjecture. The above corollary is quite trivial by itself but it
gains weight in view of some results by Connes and Moscovici who have es-
tablisbed the Novikov higher signature conjecture for the cohomology classes
of polynomials growth in groups I' satisfying certain additional condition
(which is conjectured to be valid for all T'). Probably tbe present techniques
should yield the Novikov conjecture for [E-C-H-P-T}-combable and polyno-
mially conable groups I'.

(b") Filling criteria for polynomial growth of cocycles. Suppose the filling
volume functions FoV;(£) are (at most) polynomial in £ fors = 2,...,k, which
means that every (contractible) ¢ — 1-spbere in X of volume £ bounds a ball
of volume < £7. Then, by induction, (k + 1)-tuples of points in X of diameter
¢ can be consistently spanned by k-simplices of volume <8 which implies
a polynomial bound on k-cocycles. This conclusion obviously holds true for
filling functions which are “stronger” than FoV;({), e.g. the filling span F55(¢)
(controlling the Lipschitz constants of maps B* — X). Moreover, one may use
some filling functions which are a priori “weaker” than F,V;. For example, one
can replace FoV; by the filling function F'V; concerning non-spherical fillings
as this does not effect the relevant cohomological properties of the resulting
cochains. On the other hand, a polynomial bound for invariants such as
FillRad cannot give better than an exponential bound on the cocycles, but
the overall picture is far from clear.

(c) Cohomology with fast growth. A. Connes pointed out to me the following
example of a cohomology class with exponential growth. Take I the solvable
group Z3o< Z for Z acting on Z? by a hyperbolic transformation. Since Z?
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has strictly exponential distortion (see §3) every 2-dimensional cohomology
class with non-trivial value on the 2-dimensional homology of Z® C T has
exponential growth. Connes also conjectured that there must exist groups
with arbitrarily fast growth of cohomology and indeed these can be con-
structed as follows. Let IV contain an infinite cyclic subgroup, say {c'}, with
large (e.g. non-recursive, see §3) distortion and take the amalgamated prod-
uct T' = I¥ ¢ Z* where C is a cyclic subgroup which equals {¢'} on the
side of I and which is anything cyclic you want in Z*. Then the growth of
the k-dimensional cohomology in I is of the same order of magnitude as the
distortion of {c'} in I". (See [Ger)s for another class of examples.)

The above example cannot give us a counterexample to the Novikov conjec-
ture, since it has 1-dimensional origin (in a sense which can be made pre-
cise) and the Novikov conjecture is known for the cohomology of 1- and
2-dimensional origin (see [C-G-M)],). But a truly k-dimensional example for
k > 3 scems harder to obtain (which is similar to the situation with the
contractibility radius R for k > 2, see §4).
(d) Bounded cohomology. No apparent coning construction can bound cocy-
cles better than linearly and this is, in fact, the best one can do for H'. Yet,
there are cohomology classes in H*(T'; R) for certain T and k > 2 which can
be represented by bounded cochains giving rise to bounded cohomology (see
[Gro]s). For example, if T is a hyperbolic group then H*(T';R) is bounded
for all £ > 2 and a certain part of the cohomology i3 bounded in the groups
(acting on spaces) with K < 0 (see [Gro],q, [D-T], [Sav]).
(e) Infinste iteration of CC and BC. The CC-incquality () for K < 0
behaves nicely when itcrated but iterating BC may lead to unpleasant diver-
gences. For example, if we define, by induction,
1 1T, 1, 1

Yo = g¥im1 5% Ui = Sl T 53
for given y1, y; and some sequence z,, I,, ..., then, according to (%),
dist(y;, y!) — 0, while (*+) does not preclude dist(yi,y!) — oo for { — oo. It
is unclear if an arbitrary (equivariant) bicombing can be used for k-th convex
combinations with a control over the size (Lipschitz constant) uniform in k.

(f) Besides the iterated convex combination for K < 0 there is another well-
known one which has the advantage of being commntative. This Zk: piZi
is defined as the (unique for K < 0) minimum point z of the fl'|=n°ction
Zk: pi dist? (z,2;). However, one does not know the exact Lipschitz bounds
:)—x: the corresponding map X*+! x A¥ — X for general spaces X with K <0.

Question. When is the (geodesic) convex hull of a compact subset A C X
compact? This is useful to know for infinite dimensional spaces and also for
“building-like” spaces such as Con,, X and Tits’ boundaries (see 6.B;).
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6.B;. Rank and the geometry of flats. One of the guiding principles in
the asymptotic geometry of spaces X with K < 0 can be expressed, roughly,
as follows. All flatness of X where K = 0 is confined to k-flats in X which
are the subspaces isometric to R*. One distinguishes among thern mazimal
flats which are not contained in bigger ones (sometimes “maximal” refers
to the maximal dimension) and then tries to show that X is “hyperbolic
{ransversally to maximal flats”.

Warning. An obvious counter example to such philosophy is provided by a
metric on R? which is flat outside a disk D and has K < 0 inside D. To take
care of this, one either has to assume that X admits an isometric action of
some [ with X/T' compact (or bounded, if we allow dim X = o0) or one may
complete X in the following way

Ultracompletion X* of X. Consider all sequences z; € X with a fixed 7o € X
(where the intercsting case is dist(zo,z;) — oo for i — o0o) and take the
Hausdorff limits (and sublimits) of the pointed metric spaces. Moreover, take
the ultralimits whenever the ordinary (sub-)limits are not available (which
may easily happen especially for dim X = o0o). The set of these limit spaces
is denoted X'* and various properties of X nay be attributed to certain spaces
X'eXt.

Ezamples. (a) If X admits a cocompact isometric action of some T, then all
X' € X% are isometric to X and there is no need to 1nention X+ at all.

(b) Let Y be a compact foliated space containing X as a dense leaf. Then
every X' € X% is isometric to some leaf in Y. (The case of compact X/T
corresponds to a foliation with a single comnpact leaf.)

(c) For the above metric on R? flat at infinity, the space X'+ contains, besides
X, the flat plane R? and nothing else (up to isometry).

(d) If X is a finite dimensional space with bounded local geometry (e.g. if
K(X) > —c > —oo) then one can always construct (this is easy) a compact
foliated space Y containing up to isometry all X’ € X* as leaves. In fact,
one may always think of X'+ as of a foliated space whosc leaves are metric
spaces and where X appears as a dense leaf.

Seven definitions of Rank.
I. Rank X =sup dim Con, X where w runs over all non-principal ultrafil-
ters. N
II. Rank X = the supremum of the dimensions of the flats in X.
III. Rank X = the supremum of the asymptotic dimensions of quasi-flats in
X which are subspaces quasi-isometric to Euclidean spaces.
IV. Rank X = dim8rX + 1 for the Tits boundary 3rX defined in (e) below.
V. Rank X = the minimal &y such that X satisfies linear isoperimetric in-
equality from dimension kg, i.e. FViy) ~ £ for k > k.
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VI. Rank X = the minimal ko with the following property. There exists a
constant A > 0, such that for every € > 0, X admits a A-Lipschitz self.
map f : X — X which is parallel to the identity (i.e. dist(f,id) < oo)
and volume &-contracting above the dimension ko. (If X is a manifold,
this means Vol f(Y') < € Vol Y for all submanifolds Y C X of dimension
> ko. In the general case one should work harder to make this definition
stick.)

VII. Rank X = the minimal ko with the following property. Let X¢ C X be
a closed subset which is the union of a set of rays in X issuing from a
fixed point zo € X (where a ray is an isometric copy of R, in X). If
dim Xy > ko + 1, then X, has exponential growth, which means every
net Ny C X, has at least expc R points in the R-balls around z, for
some ¢ > 0 and all sufficiently large R.

Remarks and comments. (a) The idea behind all these definitions is that
X behaves hyperbolically in the dimensions above rank X. For example, if
Rank X = 1, then X should be hyperbolic as reflected in the k-dimensional
geometry for k > 2.

(b) One believes the seven definitions are (essentially) equivalent in the case
where the isometry group of X is cocompact on X. In the general case one
should modify the definitions by invoking the ultracompletion X'+ of X and

setting
Rank* X = sup Rank X'.
X'ex+

Now the equalities Rank} = ... = Rank$;; become a realistic conjecture for
all X without major pathology. (Pathological or not, all X I have looked at
so far seem to have the seven Rank*’s equal.) Notice that among the seven,
some are more sensitive to the “plusification” than others. For example,
Rank; X is more likely to be equal to Rank* X than Ranky X.

Now we briefly discuss the possibility of equivalence between the definitions:

(c) I ~ I1? If X contains a k-flat then so is Con, X for every w and so
dim Con,, X > k. This shows that

Rank; > Ranky and Rank} > Rankj,

(but there are easy examples, where Rank)) X < Rank{; X).

The reverse inequality, Rank; < Rankj; has been established in §2 for sym-
metric spaces X and that argument extends to some infinite dimensional
symmetric spaces (e.g. to O(p,00)/0(p) x O(o0) ). Let us indicate how one
may extend (the plusification of) that argument to non-symmetric spaces X.
Take an oriented geodesic in X and let H;, ¢ € (—o00, o00) be the corre
sponding horospheres. As ¢ —+ —oo, the metric in H; decreases and we want
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to distinguish different “directions” in H, according to the rate of decay of
the metric. Namely, we want to partition each H; into horocycles denoted
he,y C Hy, such that

(i) The normal projection py, ., : Hy, — Hy, for t; < t, agrees with the
partition into horocycles, i.e. the pull-back of every horocycle in Hj, is
a horocycle in H,,.

(1) The induced metric on each horocycle exponentially decays as ¢ — —oo0.
Thus every horocycle h is strictly exponentially distorted in X which
should make Cone, X locally disconnected in Cony, X.

Notice that (ii) may be (hopefully) used to define horocycles as the maximal
subset on which the metric does decay exponentially. (The decay sbould be
discussed on the large scale as we do not care what happens to nearby points.)

(ili) When we divide X into the horocycles, the resulting quotient space, say
Y, must have K < 0. Then we may proceed by induction, once we know
that dim Cony Y = dim Con,, X.

Ezample. Let our geodesic be contained in a flat F C X with dimF =
Ranky X. Then one may expect Y = F, if our geodesic is regular in an
appropriate sense. (A geodesic is definitely irregular if it is contained in
several maximal flats.) The theory of regular geodesics has been devel-
oped in [B-B-E-S] and [Ban-Sch] and, with the present state of art, one
can, probably, complete the above argument for smooth finite dimensional
manifolds X with a cocompact I'-action, (and the real analytic case seems
somewhat easier). However, in the general case of K < 0 even the inequality
dimCon, X < dim X remains unsettled. Yet, the latter inequality may be
valid in a greater generality, e.g. for finitely generated groups with a kind
of polynomially Lipschitz combing mentioned earlier, whick would include,
besides K < 0, such creatures as nilpotent groups.

(d) 1T ~ HI? It is trivial that
Rank;;; > Rankp and R,ankf" > R&llkl‘i

since every flat is also a quasi-flat. Here we observe that Rankj; is not,
a priori, quasi-isometry invariant, but this invariance is known in the case
of a smooth finite dimensional X with a cocompact ['-action as was shown
in [And-Sch] by the techniques of mininal varieties. Namely, if the same
group T isometrically and cocompactly acts on two different manifolds X
and X; with K < 0 then Rank;; X; = Rankj X3. I gave anotber proof of this
result in [Grolz; using harmonic maps and my arguinent can be generalized
in several directions. (This is also true for the original proof in [And-Sch] but
1, naturally, feel more comfortable with mine.) First, one can admit singular
spaces with K < 0 as the corresponding theory of harmonic maps has been
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worked out in [Gr-Sch]. Secondly, one can forfeit I' and work with compact
foliated spaces Y. This shows that Rankf; (but not Ranky) is quasi-isometry
invariant in the category of locally compact spaces (e.g. manifolds) X with
K < 0 and uniformly locally bounded geometry (e.g. K > —¢ > —o00). In
fact [ am pretty sure this works in the general case, and, mnoreover, proves
that
Rank{;; < Rank;,

i.e. every quasi-flat in X can be flattened down to a flat in some X' € X+,
but the details need checking.

(d') An important property of flats F* C X needed for my argument in [Gro},,
is the existence of a 1-Lipschitz retraction X — F. In fact, the normal
geodesic projection is 1-Lipschitz. Similarly, every quasi-flat F — X ad-
mits a A-Lipschitz retraction with A depending on dim F* and the constants
behind “quasi” (compare §3). The normal projection, however, has an im-
portant advantage of being “canonical” and thus commuting with isometries
and Hausdorff limits which is not the case for the retraction on quasi-flats.
Yet the ambiguity here is, so to speak, compact and it can be absorbed in
the foliated language of [Groja.

(d") If a flat F C X has maximal dimension k, i.e. dim F = ¥ = Rank}; X
then the normal projection X — F has an extra nice property of volume
contraction: if a k-dimensional submanifold H C X projects onto the R-ball
B C F then, by a simple limit argument,

Vol H > MR,d) Vol B,
where d = dist(H, F)(= inf dist(h, f)) and A(R,d) — oo for R,d — oo.

This property has definite large-scale flavor and can be used for a definition
of mazimal quasi-flats in a semi-hyperbolic setting.

Finally, we notice that A(R, d) ~ exp cd for symmetric spaces X (sec [Most];)
and this may be true for all reasonable (?) X.

(€) T ~ IV? Recall that the geodesic boundary 8y, of a metric space X with
a reference point 79 € X is defined as the space of geodesic rays in X issuing
from x4, which are isometric maps [0,00) — X sending 0 — z, and where the
topology in Jge is that of the uniform convergence on (finite) subsegments
(0,8 C [0,00). If K < 0 then geo(X,z0) does not depend on zo (there
are canonical homeomorphisms Ggeo( X, Zo) —— Gyeo( X, z)) and hesides the
usual topology on Jgeo(X) there is another one defined by Tits geometry as
follows. Let Co @, denote the union of the geodesic rays (issuing from zo)
in X identified at £o. Thus Co 8y, = {d, 6}, d € [0,00), & € Fgeo, such that
(0,6) is identified with zo. We denote by Ay : Co g — X the tautological
map and observe that

dist(Al(d, 6), Io) = d.
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Next we let Ax(d, §) = A;(Ad, §), we induce the metric on Co Gye0 by A, from
X and set
disty = 27! (induced metric).

Since dist is convex on X, the metrics dist, increase with A and converge for
A — 0o to some conical metric on Co 8., denoted disty on Codpeo. The
base of this cone with the corresponding matrix is called Tits boundary and
denoted 3rX (see [B-G-S]). Notice that the identity map 37X — 8geo X is
continuous but Jgeo X — G X is usually not continuous. For example, if X is
hyperbolic, then 37X is discrete.

The cone Co 3rX is somewhat similar to Con,, X and so we expect the two
may have equal dimensions. But this is not true, in general, as is seen in the
following

Ezample. Let X equal R? with a complete rotationally symmetric metric with

K < 0. Then 31X equals the circle S! if the total curvature of X is finite,

ie. [ K(z)dz > —o0, and 8rX is discrete otherwise. On the other hand,
R3

if curvature decays at most quadratically, i.e. |K(z)| < constdist™*(z, z,),
then Con,, X typically contains (infinitely many copies of) the one-point
completion of the universal covering of R? niinus the origin. Thus we may
liave ditn Codr = 1 and dim Cone X = 2. But in this case there is a flat
“leaf” X’ € X'* wlich saves the equality Rank}, = 2.

Now, back to the general X with K < 0, we observe that every k-flat in X
gives rise to an Euclideau (k — 1)-sphere in 37 X. Thus

Ranky; € Rankyy,

(but it is not immediately clear if the geoinetry of quasi-flats makes Rankyy <
Ranky as well).

It is also clear that Co dr isometrically embeds into Cony, X and so
Rank;v < Rank;.

The major reason why Rankry may be strictly smaller than Rankj can be
visualized as follows. Two “infinitely close“ geodesic rays become disjoint in
Co 37 if they diverge faster than linearly. On the other hand if they diverge
(no faster than) polynomially they remain close in Cong, X. (Look at the
above example and also at nilpotent groups with dilations.) Yet we still hope
that the distinction between “linear” and “polynomial” disappears in the
process of our plusification and Rankj, = Rank{.

6.B,. Geometry of 3r and Morse landscape at infinity. Much of
the geometry of 3r can be rendered quasi-isometry invariant by looking at
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families of A-Lipschitz maps K — S(R) C X where K is a polyhedron of
a fixed size, S(R) denotes the R-sphere in X around a fixed point zo in
X and where A ~ R for R — oo. (More generally, one may look at the
space Mg, of A-Lipschitz maps f of K to the complement of the R-ball in
X around zp and study, as in Morse theory, the homology homomorphisms
H,(Mg,) —+ H. (Mg ) for R> R and A < X, for R — o0 and A - oo,
where A = A(f) is looked upon as a Morse function on tbe space of maps in
question.) An intelligent choice of K would be a compact subpolyhedron in
Or and then our maps K — S(K) may approximate in a certain way isometric
(or at least Lipschitz) maps K — dr. For example, let K be the k-sphere
S* X be a symmetric space of dimension n and let us look at m-parametric
families of maps for m = n — 1 — k. More specifically, let the parameter space
be homeomortphic to S™. Then we have the following obvious quasi-isometry
invariant characterization of rank X,

rank X < k41 <> for each R there exists a map S* x S™ — S(R) of degree
one whose restriction to each k-sphere S* x s is A-Lipschitz for A < const R.

Here is a related

Question. Let X and X, be n-dimensional symmetric spaces of non-compact
type. When does there exist a proper Lipschitz map f : X — X; of non-zero
degree, such that

distx, (f(zo), f(2)) 2 distx(z0,7)

for a fixed zo € X and an arbitrary z?

(f) On the local geometry of singular spaces with K < 0. Many of the difficul-
ties in comparing different Rank’s can he reduced to local problems concerning
the structure of singularities of spaces with K < 0 and with K < 1 (Tits’
boundary has K < 1). For example, the inequality Rank; < Rank{] tells
you that whenever the space Y = Con,, X has dimY = k then Y contains
subsets Y; C Y of size ¢ which look like the Euclidean &-balls for small ¢ — 0.
(Of course, one could avoid all trouble by building sucb a property into the
definition of dimension.)

In order to understand the local geometry of a singular space X at z, (notice
that 3r and Con,, of a non-singular space may be highly singular) we consider
the tangent cone Co(X, zo) which is defined similarly to Codr, but now we
use the geodesic segments (of finite length) issuing from zo and take the
limit of disty for A — 0 rather than for A — oo as in (e). (There is an
alternative definition with ultralimits, but this seems unnecessary for the
present discussion.) A point zg is called regular if dim Co(X, zo) = dim X.
(Here, what we truly need is dim Co(X,z) > dim X.) Now, if we are able
to establish the existence of a regular point, we may prove that X contains
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an infinitesimal almost Euclidean ball of dimension ¥ < dim X, by induction
on k as the base of the cone Co(X, zo) is a space with K < 1 of dimension
dim Co(X, zo) — 1.

Questions. Does every (sufficiently complete) X with K < 1 contain a regular

point? If not, what should we add to K < 17 (See [B-G-P] where a similar
question is tackled for K > 0.)

(g) Il ~ V ~ VI? Suppose X admits a self-map parallel to the identity which
contracts k-dimensional volume. Then an easy argument shows that X sat-
isfies the linear isoperimetric inequality for Fill Vol, i.e. FV; ~ £. It follows
that Ranky; > Ranky. Another obvious relation here is

l{anku S Rankv

as k-flats have FVi ~ £a1 2 £ (In fact even “big pieces” of k-quasi-flats
provide a lower bound Fill Vol, and so Ranky > Rankg;.)

Next, if X is a symmetric space (or a product of hyperbolic spaces), a volume
contracting map can be actually constructed either with the gradient flow of
the horofunction associated to a regular geodesic or with the gradient flow of
the distance function to a maximal flat. This gives the inequality

R&nkw S R;mku

for the symmetric spaces X, but one does not know if Ranky; < Rank{; for
general X with K <0.

(h) VII ~ IV? One expects, that (at least after plusifications) “infinitely
close” geodesic rays issuing from zo, either diverge linearly or exponentially.
If we have a family of rays of dimension > dimdrX, some of them should
exponentially diverge, which would prove the inequality

H,ankvu S Rznkw,

while the reverse inequality faces the problem similar to that (but seemingly
easier than) discussed in (f). Notice, that no problem arises for symmetric
spaces where we do know the equalities

Rank; = Rank} for 4, j=LIL,....

Hyperbolic corank. Consider all geodesic hyperbolic spaces Y quasi-isometri-
cally embedded into X (i.e. ¥ C X have bounded distortion) and let

coranks, X = sup dimdeY
Y

over all such Y C X.
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Eramples. (a) If X is hyperbolic (i.e. rank X = 1) then corank,, X =
dimd X.
k41

(b) As we have seen in section 3, the hyperbolic space Hg*' admits a quasi-
isometric embedding into the Cartesian product of k copies of H3. Thus
corank, [If HZ > k. In fact, a similar argument shows that the Cartesian
product of k hyperbolic spaces, X = X} x X; x ... x X; always has

k
corankp, X > ) dimd,, X,

=1
and one expects there is equality in this case.

(c) Let X be a symmetric space. Then
coranky, X > n — k,

for n = dim X and k = rank X.

Proof. The key property of X is the existence of a regular geodesicray r C X
issuing from a given point z, € X. This ray is contained in a unique maximal
flat F (by the very definition of regularity) and nearby flats containing z,
exponentially diverge along r. Thus if we take a small (n — k)-dimensional
disk S transversal to F' at some point z € r C F away from z4, then the
geodesic rays starting from o and meeting S exponentially diverge forining
a hyperbolic subspace Y in X with 3,Y = 5. Q.E.D.

Probably, corank,, X = n—k and this may be true for all “reasonable” spaces
with K(X) <0 (and generalize in the plusified form to non-reasonable X).

Remarks. (a) The notion of coranks, makes scnse for all metric spaces. Here
we should mention groups X with infinitely many ends which contain infinite
regular trees and thus have coranks, > ¢ > 0 (as explained in (6) below).
Also, solvable Lie groups X may contain large hyperbolic subspaces Y. For
example if X = R*™1 <R with the hmplied cigenvalues Ay,...,Aq_,, where
at least £ of them are non-zero and have the same sign, then corank, X > ¢
(and, probably, = £ if £ is the maxima! number of such ;).

(b) There are many refinements of corankg,. For instance, instead of dim 3,,Y,
one may use a Hausdorfl-type dimension expressed by the exponential rate
of growth of concentric R-balls in Y. This distinguishes, for example, full
fledged hyperbolic trees from something like R which is hyperbolic only in
name.

6.B;. Periodic flats. A k-flat F' ¢ X, where X is acted upon by some T,
is called periodic if there exists Tg C I' preserving F and such that F/I'y is
compact. Notice, that Ty in this case is commensurable to Z*,
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Problem. When does the existence of a k-flat F C X imply the existence of a
periodic flat F' C X? When can one approximate F by periodic flats? ere
the convergence F; — F may mean one of two slightly different things:

(1) for every R there exist R-balls B; C F; which Hausdorff converge to the
R-ball Bo(R) C F around a fixed point zo € F.

(2) distizau(Bi, Bo( R)) < const < oo for some balls B; of radii R; = R — oo.

The positive solution to the approximation problem (in the sense of (1)) has
been known since long for T acting on symmetric spaces X with Vol X/T < o0
see [Most]z). Recently, Bangert and Schroeder (sce [Ba-Sch]) solved the
existence problem for periodic flats for real analytic manifolds X with K <0
and X/T compact. Yet the existence problem is still open for 2-polyhedra X
with K <0 and X/T' compact.

The periodic flat problem can be extended to general groups I’ as follows. Let
I contain a subset quasi-isometric to Z*. Does then T contain Z*? For k =1
this is equivalent to the Burnside problem on periodic groups as I' contains
a quasi-isometric copy of Z if and only if I is infinite.

One can generalize further by starting with a quasi-isometric embedding of a
general kind of group Iy (instead of Z*) into T and then seeking a subgroup
[y € T which is in (a suitable sense) commensurable t I'y. Here is a more
specific problem. Given I'g, find a periodic (i.e. pure torsion) group I' such
that Tp quasi-isometrically embeds into T'. (The solution seems within reach
if Ty is free or free Abelian.)

6.B,. The space of flats. Let F; denote the space of k-flats in X with the
topology of the Hausdorff convergence on bounded subsets.

Question. Up to what extent is F, quasi-isometry invariant?

To avoid minor complications one may identify parellel flats (i.e. those with
finite mutual Hausdorff distance) and reiterate the question for the space Fy
of the classes of parallel flats. Also one should keep in mind the plusification
of 6.B; to avoid another class of trivial counterexamples.

The spaces F, = U Fi and F, = U F have, besides the topology, an-

other nelghborhood relat,lon For cxamplc two geodesics (i.e. 1-flats) may be
asymptotic in one direction, i.e. contain subrays with bounded mutual Haus-
dorfl distance. In general, for two flats F and F’ in X and given p one has a
convex subset A, C F' x F' defined by

A, = {(z,2') € F x F'| distx(z,2') < p},

whose shape is basically independent of p as p — oo. In fact A, is essentially
determined by two convex subsets F, C F and F, C F which are F, =
FOU,(F") and F, = F' 0 U,(F) where U, denote the p-neighborhoods.
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Ezample. For the maximal flats in the symmetric space X these F, are
(Hausdorff equivalent to) Weyl chambers in the flats along which the flats in
question are asymptotic.

Question. Suppose we have two discrete cocompact actions of a group I’ on
two spaces, say X and Y, with K < 0. Does there exist a I'-equivariant
homeomorphism between F.(X) and F.(Y) preserving (in a suitable sense)
the above (asymptotic) neighborhood structure?

Subquestions, Are the geodesic boundaries Ggeo(X) and Ogeo(Y) T-equivari-
antly homeomorphic? Are they isometric for the Tits metric? (It was pointed
out to me by M. Bridson at this meeting that if X and Y are singular spaces
with K < 0, then one does not even know whether Gyeo(X) and Ggeo(Y) are
homeomorphic without the [-equivariance requirement.)

The answer to the above question is, obviously, positive if periodic flats are
(known to be) dense in F., since periodic flats correspond to Abelian sub-
groups in I. This applies, for example, to the case where X (but not neces-
sarily V) is a symmetric space and was used by Mostow in his proof of the
rigidity theorem for Rank X > 2. (The homeomorphism between F3(X) and
F1(Y) as well as the density of the periodic flats (geodesics) is also well-known
for the negative curvature (see {Mor], [Kli], {Gro}s) and more generally for
K < 0 and rank X = 1, but it has no such a spectacular corollary as Mostow
rigidity since the asymptotic neighborhood relation on F; is not much of a
structure.) In the general non-symmetric case, one can establish certain mea-
surable [-equivariant correspondence between F.(X) and F.(Y) but one does
not know how to turn it into an actual homeomorphism (compare [Gro)y; ).

Generalization. One can (quasi)-generalize the definition of F; to an arbitrary
T by taking the space M, of quasi-isomnetric maps f : Z* — . This space
is acted upon by Z* and by T, such that the action commute, and then one
defines the space of quasi-flats of I' by

QF: = My/Z".

(Notice that the double action is also implicitly present in the definition of #y,
where we use, instead of M, the space T of isometric embeddings R* — X,
which is naturally acted upon by the isomnetry group Iso R¥, containing R*
as a subgroup, and also by T'. llere, there is some choice in the definition of
Fi 1 it may be either Z/Iso R* or T/R*, but, in fact, we are truly interested
in the space T itself with the action of (IsoR*) x I'.) The space QF, as it
stands, appears too big and ugly. Yet it may admit a pretty I'-equivariant
subquotient taking the role of ;.

8.C. Geometry of surfaces for K < 0. First, to make the point, let
V be a closed manifold with K < 0 and fo : § = V be a C’-smooth (or,
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at least, Lipschitz) map of a closed surface into V. Let us try to deform
fo in order to diminish the induced Riemannian metric. Eventually such a
deformation stops as we arrive at a tight Lipschitz map f; : S — V whose
every deformation increases the induced length of some curve in S. Then,
one knows, that the induced metric in S, albeit singular, has K < 0.

Tbe above can be generalized in several ways.

(1) One may work with surfaces with boundary where the boundary is fixed
under the deformation.

(2) One may have a continuous farnily of maps fo : S x T — V which
deforms to a tight family f;.

(3) One may work upstairs on X with a discrete but possibly non-free I'-
action and apply the tightening deformation to I'-equivariant maps of
I-surfaces to X.

Remark. There are particular minimization (tightening) deformations com-
monly used in geometry, such as the heat flow in the space of maps, but these
do not enter our play at this stage.

Ezamples. (a) If S is homeomorphic to S? then a tightening deformation may
terminate only at a constant map as no metric on $? has K < 0. (One should
make precise here the meaning of the sign of the curvature for degenerate
maps but this is not a serious problem.)

(b) Let S be homeomorphic to the 2-torus. Then the terminal tight f; is
either degenerate or it lands onto a flat torus in V, since non-flat points tend
to make the induced curvature in S negative. (An actual proof is as follows.
If f:T? — V is tight the induced metric has K < 0 and, hence, it is flat,
and the torus acts by isometrics. Now, using CC in 6.B we may average f
with its isometric translates by the torus which shortens the induced metric
unless it is eztrinsically flat, which means f: T2 = R? — X =V is a 2-flat.)
{c) Let S be a disk. Once we make it tight with K < 0 we can use the
2-dimensional geometry of such disks. For example we obtain the sharp
(isoperimetric) inequality for the filling area in V as it is known for disks,
etc.

(d) Let S be a cylinder. Deforming to K < 0 shows (by an elementary
geometry of cylinders with K < 0) that the twe components of the boundary
can be joined by a homotopy of curves whose length does not exceed that
of tbe boundary. This implies that the conjugacy problem is solvable in
U=z (V).

{e) I S is a closed surface of genus > 2 there is no immediate visible geometric
effect on S of the condition K < 0 which would not follow from the above.
However there is something one can say about the universal covering of S,
a3 it also carries a metric with K < 0. Let us make an explicit statement
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to make our point clear. Let V be a closed Riemannian manifold which is
diffeomorphic (and, hence, Lipschitz equivalent) to a manifold with K < 0.
Then there exists a constant C = C(V) with the following property. Let §
be a surface with a Riemannian metric and fy : § — V be a 1-Lipschitz map.
Then there exists a homotopy f, : S — V, such that,

(i) For every t € [0,1] the mnap f; is C-Lipschitz;
(ii) The Riemannian metric g, induced by f; on § satisfies a quadratic

isoperimetric inequality for all disks D immersed into S with a constant
independent of the immersion, i.e.

Area D < C (length (')D)2

where the area and length are measured in g;.

This property does not seem to follow (at least immediately) from something
more elementary, e.g. tbe isoperimetric inequality for V or the existence of a
certain bicombing.

Ezample. Small cancellation groups. Let T be a small cancellation group
which we assume, to make life casier, without torsion, for example, 1/6-groups
(i.e. satisfying the “at most 1/6” condition). Let V be the 2-polyhedrou
corresponding to the implied 1/6-presentation. Then, every tight surface §
in V is A-Lipschitz equivalent to a surface with K < 0 where A depend on
V but not on S. Thus tbe above tightening discussion applies to V (after an
obvious quasification). In particular, the final statement in (¢) remains valid

for this V.

Let us indicate some algebraic and topological problems where the geometry
of surfaces of higher genus may prove useful.

Conjecture. Let V be a compact manifold and &' € H?(V;R) a cohomology
class represented by a 2-form &’ on V. Then the following two conditions are
cquivalent

(1) The lift & of w to the universal covering X = ¥ is the differential of a
bounded form, i.e. & = da for [[a.|| € const < 0.

(2) The class &' is bounded in the sense of [Gro]s, i.e. it can be represented
by a singnlar cochain c(o) which is bounded by a fixed constant on all
singular simplices & in V. (This is essentially equivalent for this class to
be representable by a bounded cocycle (0,11, 72), see §§ 6.B,, 6.C,.)

Remarks. (a) Notice that the existence of a bounded a with da = & does not
depend on the choice of w representing &’.

(b) If the fundamental group I' = =,(V) is hyperbolic, then (1) and (2) are
known to be equivalent. In fact a class A’ satisfies (1) and (2) if and only
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if it is aspherical (i.e. vanishes on all 2-spheres in V). Then one can easily
show that the conjecture is valid if I’ = x,(V) is the Cartesian product of
hyperbolic groups.

(3) It is, probably, not hard to verify the conjecture for invariant forms @ on
symmetric spaces X. For example, if @ is the Kahler form of a Hermstian
symmetric X, then it is da for a bounded a, and also it gives a bounded
cohomology class on every T acting on X. (This is easy to show.)

(4) The above evidence in favour of the conjecture is rather limited and it
would be safe to make some extra assumptions on T' (K < 0, semi-hyperbolic
etc.) but even for K(V) < 0 we are able to prove (see below) only a rather
weak version of the conjecture.

(5) The conjecture makes sense for the cohomology classes b’ € H*(V,R) for
k > 3, but the implication (1) = (2) fails to be true. For example, if V is a
closed oriented k-dimensional manifold and A’ € H*(V;R) is the fundamental
class, then the corresponding & on X = V¥ is d(bounded) if and only if the
fundamental group T = x4(V) is non-amenable. Yet h hoes not have to be
bounded. For example if I' = T} x ['; where T’y is an infinite amenable group
then h is unbounded, no matter how big I'; is. (Example: take V = T2 x S,
where S is a surface of genus ¢ > 2 and 7*%7 is the (k ~ 2)-torus.)

6.C,. Genera of 2-cycles and norms on homology. Take a homol-
ogy class b € H3(V) and consider all closed oriented surfaces (continuously
mapped) in V representing h. If we choose some numerical invariants of S,
say Ini(S), Inz(S),..., Iny(S), then we can characterize h by the set of the
possible values of these invariants, denoted ZAV (k) C R®,

Ezamples. (a) Area of h. Let p = 1 and In,(S) = Area S. Then ZNV (k) C R
is a semi-infinite interval uniquely defined by its left end called

Area(h) o igf AreaS.

Notice that Area(h, + hz) < Area(h;) + Area(hs) and that

Areag b =lim ¢! Area(ih)
defines a norm on H,(V;R) = H(V)®R. A slightly nou-trivial point here is
the following non-vanishing property of this norm for compact manifolds V,

Areag(h) = 0¢> h € Tor Ha(V).

{b) Genus of h. Denote by g(h) = genus(h) the minimum of the genera
of the closed connected oriented surfaces S representing h. This is again a
subadditive function

gk + h3) < g(hy) + g(hs)
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and one can pass to the limit
ox(h) =lim i~'g(ih).

But now this norm may vanish on some non-torsion A € Ha(V). In fact,
this norm is dual to the £,,-norm on H?*(V;R) whose finiteness distinguishes
the bounded cohomology (see [Gro]s). For example, if the fundamental group
I' = m (V) is amenable then gg(h) = 0 for all A € H,(V). Moreover, the genus
may be bounded on all of H2. For example, g(h) < constr if the fundamental
group I' = m(V) is nilpotent (see [Bar-Ghy]). On the other hand if T is
hyperbolic, then gr(h) # 0 unless A is torsion modulo the spherical part of
H;(V) (i.e. the image of the Hurewicz homeomorphism x; — H-). This can be
made more precise if (V) < 0. Take our surface Sp in V representing h and
then make it tight by some area decreasing homotopy. The Gauss curvature
of the resulting tight surface S is majorized by K(V), i.e. if K (V) is bounded
by —x(s) at the points s € S, then so is K(S). Thus ¢(S) > 1+ w{ x(s)ds.

Therefore, if K(V) < —x on all of V, then
g(h) > 1+ =« Area(h) (%)

for all non-zero h € H,(V) (where we do not even have to assume V is
compact). We shall prove below a weak version of this result for K < 0,
taking into account tbe position of h with respect to 2-flats in V.

Remark. The notion of the genus for H, was introduced by Thurston for
3-manifolds V, where Thurston used embedded surfaces. In this situation g
often behaves as a norm without the R-stabilization of ours.

(c) Length of h. For a connected surface S with a metric we define length S as
the infimum of the lengths of the subgraphs (i.e. 1-dimensional subcomplexes)
R C S whose complements S — R are topological 2-cells. (It is not hard to
see that

length § < 4 (genus S) Diam S,

but there is no bound on Diam $ in terms of length 5.) One also knows that
length S can be bounded in terms of Area$S and the length of the short-
est non-contractible curve in S, called sys(S), by length § < C genus(S):
Area(S)(sys (S))™" , for some universal constant C < 2, (compare [Gro]yo).

Now we define length(h) as the infimum of the lengths of closed connected
oriented surfaces representing h. If X = V satisfies a (filling) isoperimetric
inequality controlled by FoA(€) (see §5) then, obviously

Areah < FyA(length(h))

for all & € H3(V). But there is no universal bound on Area(h) in terms
of length(h) as is implicit in the examples in 6.B, of classes in H*(I') non-
representable by slow growing cocycles on I
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(d) Genus and the geometry of flats. Let V have K(V) < 0 and let us describe
the part of Hz(V;R) which comes from 2-flats. Denote by F3(V) the space
of 2-flats in V that are maps R? — V which lifts to isometries (i.e. to flats)
in the universal covering of V. The space F3(V) comes along with a natural
action of R? and every invariant measure p on F3(V) gives rise to a homology
class, called the rotation “number” [u] € Ha(F3(V)) (or foliated cycle in the
terminology of [Sul]). The projection of such a [u] to Hy(V;R) is called flat
homology class in V. Clearly, flat classes constitute a linear subspace in

Ha(V;R).
Obaservation. If h € Hy(V;R) is flat then gr(k) = 0.

This has little to do with the curvature. Any time we have a foliated k-cycle
whose leaves are “sufficiently amenable” (e.g. quasi-isometric to R*) the £;-
norm of this cycle (generalizing gg for k > 3) vanishes. (See [Grojs and [Gro}s
for the foliated version of the £;-norm suggested by A. Connes. Warning: Do
not confuse this £ with £, of §8.)

We do not know if the converse is true, i.e. if every h with gg(k) = 0 is flat
but we can prove a weaker result concerning the pair of the invariants (genus,
Area) on H,. The corresponding subsets ZVV (k) C R? can be adequately
described by the function Area(h, ¢) which is the infimum of the arcas of the
surfaces of genus ¢ representing h. Notice that

Areah =glenzf+ Area(k, g)

and that Arca(h,g) may be significantly bigger than Areah. For example,
if I' = m (V) is hyperbolic then Area(h,g) = oo for every fixed g and all
h € I1;(V,R) — (a compact snbset).

Claim. Let h € H,(V) be non-flat (after tensoring with R) and let g; € Z,

be a sequence with limn inf i~'g; - 0. Then limsup ™" Area(ih, g;) = oo.
=00 =00

Remark. What we really would like to know is Area(ih) 2 g(1h) for i = oo

but we are only able to estimate the larger function Area(ih, g).

idea of the proof. Suppose we have a sequence of surfaces S;, in V representing
1;k such that
lim i} genus(S;,) — 0

l,'“w
and AreaS;; < i;. We may deform S, to tight surfaces without increasing the
area and so we assume S, are tight to start with. Then the average curvature
of S;; goes to zero,

/ K(s)ds/ Area S;, — 0,

S,
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and so S;, are getting flatter and flatter for i; — oo. In fact it is not hard to
show that the real cycles ij'S;; converge (or at least subconverge) to a flat
foliated cycle representing our h. (The details are not hard and left to the
reader.)

Remarks and open questions. (a) It would be interesting to describe the
annihilator of the space of flat cyclesin H*(V;R). It is obvious that every A’ ¢
H?*(V;R) representable by a form u’ vanishing on the 2-flats is contained in
this annihilator, i.e. (b’, h) = 0 for all flat A € H2(V;R). Another interesting
subspace in H;(V;R) annihilating the flat cycles consists of those A’ for which
the lifts & of w’ to the universal covering X = V are d(bounded). In fact, if
&' = d(a) for a bounded 1-form a on X, then the integrals of w’ over large
flat R-disks in V grow at most linearly (rather than quadratically in R) which
makes vanish (by a simple argument) the integral of w’ over the fiat cycles.
The relation between these spaces is unclear. For example, does vanishing of
w' on the flats imply that & is d(bounded)? Or, does this vanishing insure
that k' is a bounded (for the simplicial norm) class? (It is easy to show
by integrating w’ over tight surfaces that if w is bounded by the sectional
curvature of V, i.e. [w(7)| < const |K(7)| for all orthonormal 2-frames t in
V, then &’ is bounded.)

(b) Can one estimate the rate of decay of i-'¢(ih) for i — 0 (in the case where
this quantity does decay)? For example, what is a geometric characterization
(in our case, where J{ < 0) of the subgroup in H2(V) on which tbe genus
function is bounded? Can one effectively estimate the function Area(h,g)?
Is the function g(h) recursive? (This is obvious if g(h) > const Area(h).)

(¢) Suppose the norm gg is non-degenerate on Hz(V;R) (this means that
g(h) > const Area(h) for some const > 0). What is the geometry of this
norm? For example is gg smooth, piecewise smooth or piecewise linear on
Hy(V;R)? What is the arithmetic of ggr? For example is the number 'l_l.rg

i~'g(i k) rational (or at least algebraic) for h € Hy(V;Z)?

Generalization to Hy(V) for k > 2. Here we represent homology classes A
by integral singular cycles ¢ = 3_ n;a; where o; are singular -simplices which
are Lipschitz (we prefer them to continuous) maps of the standard k-simplex

to V. We define Vol (;) as the sum of the j-volumes of the j-faces of a; and
set

Volj(c) = Z ng VO]j(Ui)

and
Vol; (k) = inf Vol;(c)

over all ¢ representing h. Notice that Voly is proportional to the genus for
k = 2 and Vol, essentially agrees with length. Also observe that the totality of
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the invariants Vol; carries significantly more information than these quantities
taken separately. Recall, that this “totality” is represented by the set of the
possible values of the k + 1 volumes on the cycles representing h which we
denote in this case by VOL (k) C R¥*!. The asymptotic geometry of this
function VOL (h) or, equivalently of its graph

VvoL= |J VOL(h) CR x Hy(V),
hEH (V)

contains a peculiar information about the topology of V and especially about
m(V), but even for Jocally symmetric spaces V with K(V) < 0 one knows
very little about this VOL. The situation is much better understood for
K < 0 (and for the hyperbolic groups in general) where one can straighten
singular simplices ¢ and make them very narrow, such that Vol;(a) < const
for j > 2 (see [Gro]yo, [Gro|14). Notice, that “straightening k-simplices”
is an operation similar to the iterated convex combination or bicombing in
6.B. Even for K < 0 this straightening is not bound to be geodesic (though
“geodesic” is 0.K. for K < 0) as shown by the work of Savage (see {Sav]) who
studied the projective bicombing on X = SL,/SO0(n) for the usual embedding
X c P*, m =221 _ 1 and proved that the top-dimensional projective
simplices in X have their volumes (with respect to an SL,-invariant volume
element) bounded by a universal constant const,. Thus he proved that the
fundamental class b’ C H™(X/I';R) is bounded for every cocompact torsion
free I’ acting on X.

Conjecture. Let X be a symmetric space and let r denote the maximal di-
niension of the totally geodesic subspaces X’ C X which isometrically split
by X’ = X" xR. Then for every cocompact lattice I' on X and each k¥ > r+1,
all cohomology classes in H'(I'; R) are bounded.

Notice, that this conjecture looses any meaning if for some reason H'(';R)
vanishes, and it should be reformulated in a better way. Here is a possibility.
There exists, conjecturally, a I-equivariant multiconing (or combing if you
like this word better)

Ci: X' x A* S5 X, foreveryk>r

which has the formal properties of the convex combination,

k
(Iﬂv--'vzks Poy---»Pk) — ZI-'P-'
i=0
(though we do not require commutativity, compare 6.B;) and such that the
image of each simplex Ci((zo,...,zx) X A¥) has volume < const for some
“const” depending on X and k.
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Ezample. Let X = X, x X; where X; have strictly negative curvature for
§ =1, 2, and certain dimensions &;. Then the above multiconing does exist
starting from k = r + 1 = max(ki, k;) + 2, as a simple argument (using
products of simplices A% x Ag‘) shows.

There is a version of the above conjecture where r is defined as the maximal
dimension of linear subspaces T C T(V) on which the curvature (tensor) of
V degenerates in the sense that there exists a unit vector o C T, such that
K(toAt) =0 for all ¢ € T. With such an r one may expect the conclusion
of the conjecture to hold true for all manifolds with K < 0 (and there is an
obvious reformulation which applies to singular spaces). On the other hand
it is not clear what should be a global quasi-isometry invarnant version of
the curvature condition that could extend this conjecture to semi-hyperbolic
spaces. A warning comes from the following

Erample. Take the 2-torus minus two open disks, multiply it by the circle
S, and glue the two boundary components, both diffeomorphic to §' x S!
by a diffeomorphism switching the S'-generators. The resulting 3-manifold
V obviously has a metric with K < 0, its fundamental class in H3(V) is
unbounded, (i.e. the simplicial volume of V is zero, see [Groj2s), but the
universal covering X = V admits no isometric (quasi-isometric?) splitting.

6.C;. The commutator norm and related invariants. Let [[,T] C b
denote the commutator subgroup and com(«), v € [I', ['] the minimal number
of commutators needed to represent 4. In other words, if we take the set of
commutators {I',T'} C [I, T] for the generating set, then coin(7y) = dist(~, id)
in the corresponding word metric. This metric, denoted com di may be also
defined as

comdi(m,y2) = com(m7;")

and it is biinvariant on [. If [ is realized by x;(V) then comdi equals minus
the maximum of one half of the Euler characteristics of the compact connected
oriented surfaces with two boundary components representing given 1 and
Y2 nT.

The question one wishes to address is that of the asymptotic geometry of
[, T} with this metric comndi, and in particular the growth-rate of com(7)
for ¥ € [[,T]. More specifically one wants to know the behavior com(7*)
for a fixed y € [I,T} and 1 - oo. If K(V) < 0 (or more generally, if T
is hyperbolic) one knows (see {Gro]s,i4) that com(+') ~ i for all non-torsion
elements v in [[',T}. This is scen by realizing 4 by a closed geodesic in V
and by looking at minimal surfaces in V spanning 4* corresponding to the
product of commutators. Thus one sees a close relation between com and the
genus function on H,. In fact, if we fix a closed curve ¥ € V, one can speak
of the genus on the relative homology H,(V,v) in the same way we did in
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the absolute case. (One can reduce the relative case to the absolute one by
doubling V across 4 without disturbing the condition X < 0.) Unfortunately,
here as in the absolute case, all what we have to offer are

Open gquestions. For which T is the function com on [I',I} bounded? This
is known for nilpotent groups (see [Bar-Ghy]) and appears very unlikely for
fundamental groups I' = x,(V), where K < 0, unless I is virtually Abelian.
In fact, if K < 0, one may expect ,l.i'm i~! com(y*) > 0 for most cases with
an explicit list of exceptions. Then 'we want to know for which groups I’ the
function com(vy) is computable on all of [[', '] or at least on a given cyclic
subgroup {7'} C T. (See [Bav] for some information.)

Relation between com and & H,. Consider the complex of singular ¢,-chains
in V which are infinite combinations 3_ ria; of singular simplices a; of a given

dimension k (now we only care for k = 2) where the real numbers r; satisfy
T Iril < co. We denote the homology of this complex by £8 H,(V') and observe

that there is a natural pairing between €2 H.(V) and £3 H*(V), that is the
cohomology of the complex of bounded cochains.

Ezample. Let S' be the circle and h the generator of H,(S') represented
by the usual cycle which is the loop ¢ generating 7,(S”). Then this o is the
boundary of an obvious telescopic 2-chain (see [Gro]s). It follows that every
relative class in H,(V, ), represented by a surface S in V with the boundary
curve «, gives rise to a class in £8 Hy(V). If Hy(V) is finitely generated (e.g.
V is compact) and the classes h corresponding to the surfaces S with 5 = 4
all non-zero in £2 H,(V) then, clearly, lim jof i~! com(ih) > 0.

Now, in order to give a geometric criterion for non-vanishing of classes in ¢ H,
we shall slightly modify the definition in order to make possible to integrate
differential 2-forms over 2-cycles. Thus we consider ¢;,,-chains 3_ria;, where

¥ ri]l < 0o as well as

3" |ri|length(80:) < oo

and
3" |ri area(o:) < oo.

Ezample. Let V be a complete surface with K(V) = —1 with AreaV < oo

and (possibly) with cusps. Then the fundamental class of V is (obviously)
representable by a ¢, ;-cycle (compare [Grols).

Let us generalize this example by attaching a cusp C to a closed curve y C V.
Such a cusp C topologically is 4 x [0, 00] for v x0 = «, and C carries a complete
metric of constant negative curvature and finite area. Denote by V,, D V the
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result of the attaching the cusp C = C,, to V and observe that the iuclusion
is the homotopy equivalence. Yet the geometry of V, is somewhat better than
that of V because every relative class ho in H2(V,v) = Hz(V,, ) gives rise to
a class h € £8, H3(V,) as is clear from the preceding discussion.

Observation. Suppose V, carries a metric with K < 0 which is cuspidal on
C, C V,. Then the above class, h € L& Hy(V,) does not vanish, provided 8k,
is non-zero in H,(7).

Proof. 1t suffices to exhibit a bounded cocycle &’ such tbat (h’,h) £ 0. Let w
be a non-negative and not identically zero 2-form supported in C., (where the
curvature is constant negative) and let us define the cocycle representing A’
by integrating w over geodesic simplices A in V,. Since the integral [w does

not exceed a constant times the total curvature of A (as A has non-positive
induced curvature) it is bounded by const x and so0 k' is indeed bounded.

Corollary. If K(V) < 0 and K(V) is strictly negatsve at some point v € v,
then com(y') 2 i.

One can also see with the above argument, that a manifold V with K(V) <0
on a dense subset in V has infinitely generated groups €2 H, and €2 H? apart
from a few trivial cases (which are easy to isolate). This is similar to what
we know (and prove by a parallel argument) for hyperbolic groups I': If
[ is non-elementary, then {8 Hy(T) and 4 H*(T) are infinitely generated.
Furthermore, if T' — T" is a surjective homeomorphism then £ Hy(T') goes
onto {8 H,(T).

Generalization. Suppose we have several elements 4q,...,5; in [ represented
by closed curves in V and let com(vy,...,~x) be minus the maximuin of the
Euler characteristic of the compact connected oriented surfaces bounded by
these curves. These higher “commutator norms™ seem to carry some extra
information for & > 3 but there are only a few things I know about them.

(I) Suppose 41, ... 4 are (realized by) closed geodesics in a manifold V' with
K < 0, such that K does not vanish at some points v; € v;, 7 = 1,...,k

Then one can bound com(yi!,...,4}*) from below by const Zk: li |, for some
const > 0. This is seen again with minimal surfaces ﬁlling‘-Trll the geodesic
curves 7;-’ . In fact, one can similarly estimate com of any system of £ curves,
say (1,72 - - -» Ye) where each v is a multiple of some of the curves v, ..., i
(In other words, some 4; may be used several times.) It follows, that the
normal subgroup in I" normally generated by 'y;’ for sufficiently large j is free
and, moreover, v’ are normally freely independent provided the curves v; are
disjoint.

Remark. The above discussion also applies to hyperbolic groups but these do
not supersede the above I' = x;(V) as we allowed K to be zero somewhere
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on V. In fact, the fundamental groups I" of manifolds V with K < 0, such
that K < 0 at some point v € V generalize in a certain way the hyperbolic
groups rather than the other way around. (Notice, we do not need V in the
above discussion to be compact or smooth. It can be rather general singular
space or orbispace with K < 0.) This suggests a promising direction of a
true generalization of hyperbolic groups which would include these I'. The
idea may be that such a T is hyperbolic relative the semi-hyperbolic part of
' concentrated on V where the curvature may vanish. Another feature of
these I is that they are semi-hyperbolic and almost surely (in a probabilistic
sense) hyperbolic. For example, if we take a (long) random closed geodesic
4 in V it spends (or should spend if we make the definitions right) a definite
percentage of time in the region where K < —¢ < 0. Then the normal
subgroup N, C T generated by v is free and has infinite index in I'. Thus,
if we attach the relation 7 = 1 to T the resulting group I = N, will be,
essentially, as hyperbolic as I', but there is no general formalism to make this
precise. In particular, one runs into a technical problem if one iterates the
above by taking a random 4’ € TY, then v € T = T"/N,, etc. (If K(V) is
strictly negative, attaching a random relation keeps us within the realm of
hyperbolic groups, compare conformal hyperbolicity in Appendix to §8.)

To give more substance to our discussion let us recall a couple of standard
examples of manifolds and singular spaces, where K < 0 almost everywhere.

(G) Cubical polyhedra with no-A-condition (see [Gro),4) have K < 0 except
for a union of subtori. In particular, Davis’ refiection groups I' fit the above
discussion.

(00) Let Vp be a complete n-dimensional manifold with constant negative
curvature which has two cusps Cp and C,. If we chop away these cusps,
we obtain a manifold V; with a boundary. The boundary consists of two
components By = dCp and By, = 3C, whose lifts to the universal cover H"
of V5 are horospheres. (The cusps Cp and C) we have chopped away, were
covered by the corresponding horoballs.) Thus By and B, are flat Riemannian
manifolds and we now suppose they are diffeomorphic. Then we fix a linear
diffeomorphisin between them (which exists in every homotopy class) and
consider the manifold V' obtained from Vj by gluing By to B; according to
the chosen diffeomorphism.

Claim. The manifold V admits g metric with K < 0 and such that

(i) K <0 outside the flat manifold B corresponding to Bo = B, in V.

(ii) A complement of a tubular neighbourhood of B in V is isometric to V.
Idea of the proof. Recall that Cy C V topologically splits as Cp = By x [0, 00)

and the metric (of constant negative curvature) in Cp is ¢ = dt + e~'go for
the flat metric gp in By. Thus every “slice® By x t is a flat manifold obtained
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by rescaling go. Now, our diffeomorphism B, ++ By transplants another flat
metric to By, say ¢, coming from B,. Then we consider the following metric
¢ on C, which interpolates between go on By and e™*g, on By x ¢ for large ¢,

g =dt’ + g,

where g, = go for t < 1, g = g for ¢ > ¢, for a sufficiently large ¢, and such
that g; = a(t)go + b{t) for t € [1,to] where a(t) and b(¢) are smooth positive
functions in ¢ with small derivatives and such that

a(t) +b(t) =1, te(l,t},

a(l)=1 and a(f)=0.

As we can take tg as large as we want, we can make the derivatives a’(t) and
¥(t) as small as we need and then the metric ¢’ has its curvature arhitrarily
close to that of g. Now, our (V;, ¢’) has two isometric cusps and gluing by an
isometry is a trivial matter.

Remarks. (1) It is somewbat harder but yet sometimes possible to glue along
a non-linear diffeomorphism (see [Fa-Jol).

(2) If V; has vaniable curvature pinched between two negative constants —oo <
-x1 € K(Vo) € —r2 < 0, then B, and B; are (diffeomorphic to) infra-
nilmanifolds and, in general, V has no metric with K < 0, Yet such V may
be regarded semi-hyperbolic in a suitable sense as it carries metrics of almost
negative curvature (in a sense we do not make precise in this paper, compare
the discussion on definitions of semi-hyperbolicity later on).

On the other hand, if the cusps are isometric we may have negative curvature
by gluing the cusps (rather than their boundary). Thus one can see that
71(V) survives attaching discs to random closed curves, but it becomes not
so clear if the cusps are not isometric.

(3) Let V be an irreducible locally symmetric space of finite volume and
rank > 2. Then there is no infinite free normal subgroup I C T since by
a theorem of Margulis I'/T' must be finite if T' is infinite (see [Mar]s). It
follows that the lower bound on com(y;,...,+;) must fail. Suppose, to make
it simpler, that the curves 4} are positive multiples of a single closed geodesic
yinV,ie v} = 4%. One wonders if the lower bound on com(yy, ... ,'y;") hy

¢
const ¥ |#;] remains valid when all ¢; are of the same sign (or are subjected
)=l

to another restriction of this type).

8.D. Group actions on simply connected spaces X with X < 0. The
basic geometric characteristic of an isometry «y on X is the displacement func-
tion di,(z) = dist{z,v(z)). For example, if we take some finitely generated
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group T for X then the boundness of the function di, on I signifies that the
centralizer C,, C T has finite index in T

If X has K(X) < 0 then the function di, is conver. This is obvious (since
distx (%1, 22) is convex) but very useful. It follows that each level di}'[0,d] C
X is a convex subset in X and in particular the minimum set M, C X is
convex (but it may be empty).

The geometry of the displacement functions of isometries v on X is most
transparent if the group T constituted by these 4 is cocompact on X. A
significant part of this geometry has been carried over to bi-automatic groups
in [Ge-Sh], and similar results for more general bicombable groups have been
announced in [A-B]. However, the following exemplary result for K < 0 ob-
tained with the displacement geometry have not found yet a semi-hyperbolic
counterpart.

Theorem. (Gromoll-Wolf, Lawson-Yau, see [G-W], [L-Y].) }f X/T is compact
and T splits into a Cartesian product, ' = I'y x I'; with infinite 'y and T,
then X isometrically splits as well, X = X, x X;, with unbounded X, and
Xs.

Remarks. (a) In this theorem X should be a smooth manifold without bound-
ary. If we allow singularities, we split not X itself but its core which is a
certain convex I'-equivariant subset X, in X.

(b) The theorem implies that if the centralizer of each € T has infinite index
in T, then the splitting is preserved by some subgroups of finite index in .

(c) This theorem, as stated, does not seem suitable for semi-hyperbolization.
Here are some conjectural candidates for this role.

(1) Suppose X (and hence I') admits a quasi-isometric gplitting X = X, x
Xz where X;, i = 1, 2, are quasi-geodesic spaces with positive asymptotic
dimension. Is then T quasi-isometric to a Cartesian product of two infinite
groups?

Warning. One should not expect an actual splitting as a group I' may act
irreducibly on, for example, H? x H?, Yet, if such a situation arises, one may
be able to identify what happens. For example, if some I' 1s quasi-isometric
to H? x H? and yet no subgroup of finite index in ' splits, then I' must
admit a cocompact isometric action on H? x H2. This particular example fits
into another well-known conjecture: if a finitely generated group T is quasij-
isometric to a symmetric space X then a subgroup I'" C T of finite index
admits an isometric cocompact action on X. This is known for rank X =1
(where the most difficult case is that of the hyperbolic plane H?2 for X) and
the case X = Xj x ... x Xi for rank X; = 1 appears easy (I checked it for
products of hyperbolic spaces).
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(¢) One can modify the assumption of the splitting conjectures by requiring
some splitting (topological or bi-Lipschitz) of the tangent cone Con,, I' where
one may additionally insist on such a splitting being equivariant in a suitable
sense.

8.D,. Thick-thin decomposition and collapsible actions. Let dir ='j;1£

di,, consider the level
Xs = {z € X | dir(z) < 6}

and observe that for each point z € X there exists a non-empty finite set of
elements in I', say M(8) C T, such that

v € M,() & diy(z) = dir(z) < 6.

Notice that typically M:(6) consists of a single element 4 but as we move
z in X the displacement di,(z) may grow and at some moment we have
to switch to another element 4’ € T. Since X is connected (this is our
standing tacit assumption) there must appear some point y € X, where
di,(y) = diy(y) = dir(y). Such points y typically form a hypersurface in X,
then the points where three elements from I’ meet with the same displacement
(equal dir) form a codimension two subset etc.

Now, suppose the local geometry of X is bounded in the following weak sense:
every ball of radius r < 1 in X contains at most N disjoint balls of radius
r/4 for a fixed N independent of r and the center of the ball.

(Generalized and weakened) Margulis’ lemma. Therce ezists a constant
8o = bo(N) > 0, such that if 6 < 8o, then, for every z € X, the subgroup in T
generated by M. (6) is virtually nilpotent.

The proof easily follows from the polynomial growth theorem (sce [Groje ,10)-

Historical remark. This lemma (in a finer form) for homogeneous manifolds is
due to Zassenhaus and to Kazhdan and Margulis (see [Rag]). The latter au-
thors introduced, with the aid of this lemma, the thick-thin decomposition of
(T acting on) a symmetric space X in the course of their solution of Sclberg’s
conjecture. (See [Ka-Ma]. Some fragments of the Zassenhaus-Kazhdan-
Margulis argument were repeatedly used by various authors, especially by
those working on Fuchsian and Kleirian groups, unaware of the source of their
ideas.) Then around 1970 Margulis generalized Zassenhaus’ theorem to Rie-
mannian manifolds X with |[K(X)| <1 and |InjRad| > 1 and applied that
to the study of complete manifolds V with —co < —5) < K(X) < —x2 <0
and with finite volume. (Margulis has not written down his results, except
for a few (partly erroneous) remarks in [Mar]s, but he gave several lectures
around 1970 in Leningrad.)
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Definitions. (a) Pick up a positive constant § < &(N) and divide X into
two parts, Xua, where dir > § and Xpa where dir < 8. The division
X = Xwia U Xinin 18 called the thick-thin decomposition.

Comment. If T has no torsion, then dir(z) on V = X/T equals twice the
injectivity radius of V at z and the thin part can be characterized by the
property that its dimension on the scale & § is strictly less than the topological
dimension of V. In fact, the thin part can be mapped to a lower dimensional
space with infra-nilmanifolds for fibers (see [Gro]s, [G-L-P], [Fuk], [C-F-G]
where this idea is expressed with different degree of precision).

(b) All of the above motivates the following more abstract definition of a
collapsed (or thin) action of T on X. First we define an A-structure on (X, T)
as a map which assigns to each z € X a finite subset N; C T, such that
Nys) = 4Ny, forall y € T.

(i1) For every v € T the subset X, C X defined by z € X, & v € M; is open.

(iii) For each £ € X the subgroup generated by N: in I is an infinite virtually
nilpotent group.

(iv) There exists a constant d > 0, such that di,(z) < d whenever z € X,
(i.e. vy € M,).

Remark. If T has no torsion then the collection of the finite subsets in I', where
each of them generates an infinite virtually nilpotent subgroup constitutes in
an obvious way a simplicial complex, say Q(T') where I' acts by conjugation.
Then the above A -structure can be defined as a continuous equivariant map

of V to Q(I).

Ezample. Let I' be a non-elementary hyperbolic group without torsion. Then
it is easy to see that (X, T') admits no A-structure as there is no corresponding
map X — @Q(I') (see §6.6 in [Gro)ip for homological and geometric criteria
for the non-existence of maps X — Q(I') expressed in terms of the homotopy

quotient Q(I')#T).

Definition. An action of T on X is called collapstble (or thin) if it admits
an N -structure.

Remark. There are two aspects of the notion of collapsibility. First, this can
be attributed to an abstract group I' since for certain classes of spaces X
acted upon by I' the existence of an A/-structure depends only on T'. For
example, if ' may act frecly and cocompactly on a k-connected space Xj,
for an arbitrarily large k, we can define collapsibility of T' as that for all
Xi. Another aspect of the collapse is geometrical. If, for example, X has
K(X) < 0 then every collapse takes a particular geometric shape. Namely,
X decomposes into convex subsets, say X;, where each of them isometrically
splits, X; = X! x R. (Compare §6.6 in [Gro)1o.) Then if we look downstairs
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on V = X/T we see this V sliced into flat tori of various dimensions as in the
last example in 6.C;.

Now, suppose V is a compact non-collapsible space with (V) < 0 (where
“collapse of V" refers to that of the universal covering X = V acted upon by
T = m(V)). Then one expects the topology of V to be in certain respects
non-degenerate. For example, let X be a topological n-manifold without
boundary (or, may be, just a pseudo-manifold).

Conjectures. (a) If V is non-collapsible then the simplicial volume ||V|| of V
(i.e. the &-norm of the fundamental homology class) does not vanish. (Notice
that if V is collapsible then ||V|| = 0, see [Gro]s.)

(b) Take a sequence of finite index subgroups I'; C T such that ind T 2 00,
(It may be safer to assume N\ I; = {id}.) Then the minimal number of

generators in I'; goes to infinity for t — oo. (This is known for hyperbolic
groups and also some arithmetic groups by the work of Lubotzky, sec [Groj,,,
{Lub].)

(c) There are only finitely many cofinite extensions [ D I' without torsion
(cofinite = IV/T is finite). This is proved for lattices in semi-simple groups
by combining Mostow rigidity with the non-collapsibility of such groups es-
tablished in (Ka-Maj.

6.D;. Uniflat spaces and groups. Let X be a symmetric space or a
Cartesian product of several hyperbolic spaces. Then the maximal flats are
rather uniformly distributed in X. For examnple, there is a maximal flat
through each point z € X. Moreover each geodesic (and even eacb flat)
is contained in a maximal flat (of dimension = Rank X). Next, if we look
at Cong, X we shall see that the group of bi-Lipschitz homeomorphisms of
Cong, X is transitive on the set of flats in Cong, X (which are essentially the
same as flats in X). Now, if we have I' cocompactly acting on X then this
uniflatness can be attributed to . In fact we can do it even better with
such T as the (maximal) periodic flats, corresponding to the (maximal) free
Abelian subgroups, are dense in the space of all flats.

One knows, that if X is a (smooth!) Riemannian manifold with K < 0 where
every geodesic is contained in a k-flat for k > 2, then either X non-trivially
isometrically splits, X = X; x X;, or X is a symmetric space for both)
provided X admits a cocompact T-action. This is the celebrated theorem of
Ballmann and Burns-Spatzier (see [Ball], 23, [B-G-S], [Bu-Sp] and [Eb-He]).
Yet this is unknown for singular spaces and “small” T acting on X.

Classification problem. One seeks a rough classification of [-spaces X with
K < 0 modulo those with K < 0 in the case where T is sufficiently large (e.g.
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cocompact). A first approximation conjecture in this regard would say that
every X falls into some of the following three (not quite mutually exclusive)
categories.

(1) Almost hyperbolic spaces as those discussed in 6.C;., where the curvature
is negative (or can be made such) on a substantial part of X.

(2) (X,T) is collapsible.
(3) X is uniflat.

Notice, that in each of the tbree cases one may try to analyze (X,T') further:
In case (1) one would like to reduce all flatness of X to some kind of a core
Xo C X (where the curvature vanishes) and which has dim X, < dimX.
Such a core is clearly visible in the Davis’ reflection spaces and the manifolds
obtained by gluing together hyperbolic cusps (see (O) and (00) in 6.C;) where
the flatness localizes to several (flat) tori. But the following examples indicate
different possibilities.

Ezamples. (a) Let Vi V V3 be two closed manifolds of positive dimensions
with K < 0 joint at some point. Here xy(W vV V3) = ;y(V)) + -y (V;) and the
space Vi V V; should be taken as almost hyperbolic, regardless of particular
geometries of ¥} and V4. In fact, if we take a random closed geodesicin ¥ V1,
it will visit both V] and V; (the probability of staying in one half exponentially
decays with the increase of the length of the geodesic if the probability scheine
is set up correctly). Such a geodesic 4 enjoys all hyperbolic features such as

() comz’) ~
(ii) the normal subgroup generated by « is free.

Intuitively, the joint point in V; V V; carries an infinite amount of negative
curvature, while the flatness “localizes” to V} and V; taken individually.

(b) One can generalize the above discussion to the amalgamated products of
(fundamental) groups which appear when one glues V] and V; along isometric
locally convex subsets W; C V;, 1 =1, 2.

Next, in the collapsible case (2) one can break the space into pieces each of
which is the Cartesian product of something lower dimensional by R. Finally,
the uniflat spaces may be amenable to a generalized version of the Ballmann-
Burns-Spatzier theorem.

Ramified covers. “Uniflatness” and “almost hyperbolicity” may be mixed up
together in a quite intricate way. What we have in mind appears when we
take a ramified covering of a manifold V with K < 0 wbere the ramification
locus is some totally geodesic submanifold £ C V of codimension two in V. If
the normal bundle of ¥ in V is (topologically) divisible by k, then there exists
a unique maximal covering of the complement V — T which ramifies around T
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with order k. The metric completion of this covering, denoted X, = f’(kE)
is simply connected and has K < 0. The covering group ['v = m(V,kX)
isometrically acts on X with X /T = V. Notice that we allow k = oo where
X is the metric completion of the universal covering of V — £ (and where
we need no extra assumption on the normal bundle of E).

Ezamples. (a) Let V =S x § for a surface S with K(S) <0and EC S x §
be the diagonal. Then one can construct X, for k¥ = oo and every finite
dividing the Euler characteristic x(5). (If S i3 an open surface, then every
k > 0 will do.) The geometry of such an X reflects the intersection pattern
of geodesics in S as the ramification unflattens the flats in V' corresponding
to pairs of intersecting geodesics in S.

(b) Let V = X/I' for the symmetric space X = O(n,2)/0O(n) x 0(2) and
let & C V be covered by the subspace Y = O(n — 1,2)/0(n — 1) x O(2)
isometrically embedded to X (compare [Tol]). (The normal bundle of ¥ in
V is non-trivial but it can be made highly divisihle by passing to a finite
covering of V.)

Now we observe that whenever we have a ramification around ¥, there appear
geodesics which stably intersect X. In particular, if Vi — V is a finite rainified
cover for k > 2 (recall, that V., topologically is V — X), then we have plenty
of closed geodesics in Vi meeting L. (For instance, one can easily prove for
the above (a) and (b) that such closed geodesics are densc in the space of all
geodesics. Probably, this is true in the general case as well.) We take such
a closed geodesic v in Vi which meets ¥ at finitely many points and assume
that at a meeting point £ € v C V; our + is not contained, even locally near z,
in any 2-flat of V;.. Notice that this condition is typically satisfied. Take, for
example, such a v in the above (a) and look at the two natural projections
of 4 to S. Thus we obtain two broken geodesics in S which (necessarily)
meet at the breaking points corresponding to the intersection of 4 with the
(ramified) diagonal in § x $. Then the above no-flat condition is satisfied at
a breaking point if it is an isolated intersection point of the two projections
(i.e. the two should not have a segment in common). Similarly, one can show
that the “no-flat” property is generic in the above (b) as well.

Whenever we have a closed geodesic 4 which at some point is not contained in
a local flat, we can see this v displaces the essential hyperbolic features, such
as com~' ~ i etc. In particular a generic geodesic v in the above examples
(a) and (b) generates a free norinal subgroup in the group Ty = m(V, kX).
This is especially interesting in the case (b) where by the Margulis theorem
the original group I' = x;(V) has no non-trivial normal subgroup of infinite
index.

Despite the presence of a substantial amount of hyperbolicity at X in Vi, k 2
2, there are too many flats in Vi to make curvature negative near X by
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perturbing the metric. Namely, for every point in Vj close to the ramification
locus £ C Vi (lying over ¥ in V) there is a flat in V) passing through
this point in the above examples (a) and (b). It follows that there is no
deformation of the metric of Vj, in the class of metrics with K < 0, which is
supported ncar . In fact, we may expect a Mostow type rigidity theorem
for the groups I') in these examples. (In the case (a) it is the Gromoll-Wolf,
Lawson-Yau rigidity rather than that of Mostow we expect.)

Remark. The group T'o = x1(V —X) in the above example (b) is not residually
finite (see [Tol}) though it is by any standard semi-hyperbolic.

6.Ds. Non-cocompaet groups. When T acts on X discretely and cocom-
pactly then the ties between X and I’ become especially close as, for example,
such an X is quasi-isometric to I' with the word metric. We have been as-
suming frequently in our discussion that I is cocompact. If we have made the
cocompactness assumption so often, it was only to facilitate the exposition
and not because the author adheres to the conservative (and unfortunate)
point of view that only cocompact groups [' deserve serious attention. In fact
the most important groups in mathematics, such as SL,Z, SL,Q, and the
(Teichmiiller) mapping class group, naturally (and discretely) act on spaces
with K < 0 where the action is non-cocompact. Recall that SL,Z acts on
X = §L,/SO(n) and the group S1.,Q acts on the product of the above X
with X,, p =2, 3, 5, 7,..., which are the affine buildings replacing X for
the finite primes p. The mapping class group acts on the Teichmuller space.
Notice that the Teichmiller metric itself does not quite have K < 0 though it
is rather semi-hyperbolic. On the other hand the Weil-Peterson metric does
have K < 0. Some people may be bothered by the fact that this metric is
not geodesically complete, but this property is not essential for our discus-
sion of K < 0. In fact the Weil-Peterson metric is convex in our sense and it
looks near infinity as the universal covering of V — X we met in the previous
section.

The groups in the above examples share a common feature which is similar to
cocompactness but is sommewhat weaker: they have finite covolume and so are
equivalent to the space they act on in the measure theoretic sense. (Here we
should take an extra care in the case of the mapping class group.) However,
even the finite covolume condition feels too restrictive for iy taste. Here are
some reasons.

1. A self-contained theory needs infinite covolume groups as they appear, for
example, as subgroups of groups I' which do have finite covolume. Also when
we stabilize X, by enlarging dimensions (which may even becorne infinite in
the process) we also loase finite covolume (and cocompactness) at least in the
literal sense. (A typical stabilization is passing from a hyperbolic space H"
to H**! 5 H" and eventually to H*° D> H".)
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2. There are many beautiful groups I' which are neither cocompact nor of
finite covolume appearing in the theory of Kleinian groups. (In fact this
theory is mainly concerned with groups of infinite covolume.)

3. The finite covolume assumption is redundant in certain applications, espe-
cially in the problems surrounding the Novikov higher signature conjecture.

4. Many questions become more difficult and more interesting if we do not
insist on the finite covolume.

FEzample. Let I’ be an amenable group discretely acting on X with K(X) <0,
If the action is cocompact, then I is virtually Abelian by Avez’ theorem (see
[Av]) and Avez’ proof readily extends to groups acting with finite covolume
as was shown, I recall, by some student of R. Zimmer. Notice that in [Av]
and in the subsequent papers X is assumed smooth Riemannian but the
singularities do not seem to interfere with the proof. On the other hand, if
T' has infinite covolume it may be significantly more general. For example,
every finitely generated polycyclic group I' may act on X = SL,/SO(n) for
some n = n(T"). A non-polycyclic solvable example is provided by the group
%; 2:5.-) where z is a
diadic rational. This I’ is discrete in SL;R x $1,Q; and hence, acts discretely
on H? x Y, where Y is the Bruhat-Tits building associated to §L;Q,, which
is the infinite regular tree with three edges at every vertex. Notice, that T
contains an Abelian subgroup with unbounded division (by 2'). 1 am not
certain if this is solely due to the singular nature of trees (as I fail today to
solve exercise (ii) on p. 91 in [B-G-S] which I suggested 10 years ago).

I' = (z,y | z¥ = z?) represented by the matrices (

Open problem. Find a condition on the action of an amenable I’ on X with
K(X) < 0 which would insure that T' is virtually Abelian.

The above examples indicate that the following condition may prove useful.
Strong stability. There exist some elements v,,...,7; in T, such that the

distance from z to a fixed orbit I'(zo) C X goes to infinity.

Notice that if T is finitely generated it is enough to try a generating set for
Y,--.»%- The failure of the strong stability intuitively signifies that the
action of I' can be moved to infinity. In fact, one can make this precise
by invoking the “foliation” X'* associated to X (see 6.B) and then “moving
to infinity” amounts to an action of another group I on some X' € X+
where IY may be equal to T or be even bigger. (If, for instance I' = {4},
where 212& di,(z) = 0, then for the sequence z; — oo where di,(z;) — 0 the

limit group 1V contains R, which is definitely bigger than the original group
{r}1=2)
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The strong stability condition is well adapted to the theory of harmonic
maps. Namely if Y is an arbitrary Riemannian manifold with a cocompact
action of I', then for every strongly stable action I' on X (with K(X) < 0)
there exists a unique I'-equivariant harmonic map ¥ — X. (This is an
easy corollary of the Eells-Sampson theory of harmonic maps (see [Ee-L), 3)
pointed out by Donaldson, see [Don} [Cor}; and [Gr-Sch].) An interesting
approach to the above amenable group problem (for subgroups of cocompact
groups) via harmonic maps was suggested by M. Anderson (see [And},) but,
unfortunately, the argument in [And), is not conclusive. (Compare the free
subgroup theorem stated in [Ball]s,.)

The above problem on amenable groups reflects the general lack of informa-
tion on countable groups I'" which admit discrete (i.e. uniformly unbounded as
defined in III of 6.A) actions on simply connected spaces X with K(X) <0.
For all we know, every group I' may admit such an action on some X. Even
if we assume X is a Riemannian manifold and T has no torsion, the only
detectable effect of K(X) < 0 is contractibility of X and the issuing in-
equality dimT < dim X (where dimT refers to the length of the shortest
resolvent). Morcover, we do not gain much by insisting on negative curvature
K(X) € —x < 0 as one can “hyperbolize” every X with K(X) < 0 by taking
X' = X x R with the Riemannian metric e‘gx + dt?.

Test question. Let V be a (geodesically) complete Riemannian manifold with
K(V) € =« < 0. Does the fundamental group I' = =,(V) have a solv-
able word problemn? (The positive answer seems more feasible if we assume
|K(V)] € C < oo and/or that every v € I' is Ayperbolic which means the ex-
istence of a closed geodesic in V representing the conjugacy class of v in T.)

Fzamples and non-ezamples. There is a variety of infinite dimensional spaces
X which nearly (but not quite) have K < 0 and where every T' may act.
Take for instance the space £, = €,(T) of bonnded functions I' — R with
the sup-norm. The obvious action of T on ¢, by translations is non-discrete
but the discreteness can be recovered with a suitable (unbounded Lipschitz)
function on I', e.g. with d(y) = dist(v,id), as follows. Let X = £, + d that
is the space of functions on T of the form f + d for all f € ¢,,. This X is an
affine space of £,, and thus isometric to £,,. But now the obvious action by
[ is discrete (as well as isometric) on X.

It would be infinitely more satisfactory to modify the above construction
by somehow replacing £, by the Hilbert space £;, but this is, in principle,
impossible for many groups I'. For example, if I' has Kazhdan’s 7'-property
{e.g. I'= SL,Z,n > 3) then every isometric action of T on the llilbert space
is bounded (i.e. has bounded orbits). Yet every subgroup T in O(n, 1) or in
U(n, 1), has a property opposite to T (such groups are called a-T-menable in
(Gro}is) as they admit discrete (i.e. strictly unbounded) isometric action on
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{3 (though the construction is tricker). Qur T-action on £, generalizes to £,

with a function d(v) on T', such that d'(y) = d(y) — d(v'¥) is in £, for all v,

but d(7) itself is not in £,. If limsup d(y) = 0, we obtain a discrete action and
v=+00

if lim inf d(v) = 0 then our action is unbounded (which is less than discrete

but better than nothing). In particular, every non-trivial element in the 1.
dimensional £,-cohomology of I" gives us an unbounded action on £,. Also if
T' has polynomial growth the above works for all p with d(v) = (dist(y,1d))*
for a suitable a = a(T',p) < 0.

Problem. Given a group T' (e.g. T = SL,Z), find those p for which I' admits
a discrete (or at least unbounded) isometric action on some space £, or on
another space of comparable degree of convexity, e.g. a subquotient of L,).

Another class of spaces X with many actions appears as follows. Take some
convex cone of functions on T, e.g. the cone of positive functions with a given
rate of growth (or decay). The base of such a cone is a convex set (in a
projectivized function space) and the obvious action of T is isometric (and
often discrete) for the Hilbert metric on this convex set. Unfortunately, most
Hilbert metrics are rather irregular (like the space £, ) and do not fulfill the
CAT requirement for K < 0.

Finally, we observe that every representation of ' by bounded linear operators
on R* gives in an action on the “symmetric space” Xo, = GLo/O(00) x
R*. (See III in 6.A.) This can be achieved, for example, for R® realized
by £3(T,8) for some weight function § on I. If §(y) — oo for ¥ — oo, the
resulting action of T on X, is discrete. Unfortunately, X, is as irregular as
L, and the smooth alternative would need the group of the operators 1 +
Hilbert-Schmidt. But discrete actions on the corresponding symmetric (now
Riemannian) space X, are harder to come by.

Question. Does cvery T admit a discrete (or at least unbounded) action on
X327 Can one classify such actions by further geometric properties? (The
same questions apply to the spaces X, associated to Schatten’s L,-classes of
compact operators.)

6.E. Semi-hyperbolicity problems. We have made every effort to present
our discussion on K < 0 in a manner suitable for semi-hyperbolization, but,
of course, most of the problems for K < 0 become only more difficult for
semi-hyperbolic spaces and groups. There is yet another class of problems
for semi-hyperbolic objects of foundational nature (whicb has no counter-part
for K < 0) which concerns the relation between various definitions of semi-
hyperbolicity. There are two groups of such definitions: the definitions of
the first group mimic the coning and combing properties of K < 0 (see 6.B)
and those of the second group appeal to tlie geometry of surfaces (see 6.C).
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The combing approach is emphasized in [A-B] following the work by Gersten
and Short on bi-automatic groups. Yet it is still unclear what is the relation
between the different kinds of coning, combing and bicombing. For all we
know, just the existence of an {E-C-H-P-T}-combing may be good enough for
the definition of semi-hyperbolicity, as no pathology has yet emerged to light
with this property. Notice, that this definition is quasi-isometry invariant
(which is a definite asset but not at all a necessity). Thus the non-trivial
central extensions I' of hyperbolic groups (which are, according to an obser-
vation made independently by Gersten and Epstein, quasi-isometric to trivial
extensions) should be regarded semi-hyperbolic. (Notice that according to
exercise (i) on p. 91 in [B-G-S) the semi-hyperbolicity of these groups is, in a
certain sense, less prominent than for the trivial extension I' = IV x Center.)

The definition of semi-hyperbolicity via surfaces is implicit in the theory of
small cancellation groups which are semi-hyperbolic in the “surface” sense.
This is a definite advantage of surfaces over combings: there is no example
(to the best of my knowledge) of a group with an invariant bicombing which
does not come from K < 0 and pure hyperbolicity. The only result I know of
relating the geometry of surfaces with combing appears in [Ge-Sh]; ;3 where
some small cancellation groups are proved to be automatic and hence [E-C-
H-P-T}-combable.

Question. Let T be a group with a finite aspherical presentation. Does
then the quadratic isoperimetric inequality for ' imply the existence of a
(T-invariant) bicombing, or at least some combing?

6.E,. Semi-hyperbolic constructions. Whichever definition we lay down
for the foundation of the semi-hyperbolic theory, the following three classes
of groups must be admitted into the semi-hyperbolic pantheon.

1. Word hyperbolic groups. (In what follows we concentrate on the simplest
aspect of the semi-hyperbolicity corresponding to cocompact actions which
explains “word hyperbolic” rather than plain “hyperbolic”.)

2. Groups cocompactly acting on simply connected spaces X with K(X) < 0.
Here we may allow more general convex spaces X as in [Gro]s but it is unclear
if we thus obtain a larger class of groups.

3. Small cancellation groups.

Next, semi-hyperbolicity must be stable under the following operations:
I. Cartesian products and direct factors.
1I. Free products and free factors.

Hl. Commensurability, i.e. passing to subgroups (or overgroups) of finite
index.
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IV. Convez surgery: amalgamated products, HNN-extensions, ramified cov-
ers (this is made precise below).

V. Hyperbolic and semi-hyperbolic products; factoring away random hyper-
bolic relations (see below).

V1. Ultralimits (also explained below).

Ezplanations. (i) Convez surgery. When we glue spaces with K < 0 by locally
isometric maps of locally convex subsets we end up again with K < 0. For
example, let W — V be a locally isometric map which sends W onto a totally
geodesic subvariety (which may have double points or even be everywhere
multiple as a geodesic representing 7%, k¥ > 2). Then we can attach the
cylinder W x [a,b) to V by gluing W x a to V by this map. This does not
change by itself the fundamental group, but it can be used for this purpose
whenever we have two locally isometric maps a and 8 of W to V as we can
glue W x [a,b] to V at both ends by the map aon W xa and #on W xb. The
fundamental group T of the resulting space V] is either an HNN-extension
of T = = (V) (this is the case if V is connected) or an amalgamated product,
which appears if V consists of two coniponents, one recciving o and the other

8.

Corollary. Let Ty and I'; be groups with K < 0 (which is here a short way
to say they cocompactly act on simply connected spaces with K < 0). Then
the amalgamated product of 'y with T3 over arbitrary infinite cyclic subgroups
(or finite extensions of cyclic groups) has again K < 0.

Proof. Apply the above to geodesics ¥; representing the cyclic subgroups
C; C Ti,t =1, 2. Here we can always rescale the metric of one of the
implied spaces, say of X}, on which Iy acts, in order to have length (,/C,) =
length (32/C3) and so the gluing process will be compatible with isometries.
(If there is no torsion we can pass to the quotient spaces ¥} = X,/I"| and
V2 = X3/T; and glue together the closed geodesics v, = 71/Cy and 4, =
3/Cs.)

Warning. The above works for HNN-extensions if the corresponding closed
geodesics have equal lengths but not in general, even if we avoid the obvious
pitfall of gluing together multiple closed geodesics of different multiplicity (to
avoid groups like {a,v | v* = ¥%)).

Counter-ezample. Take the standard flat torus 7" = S' x §' x ... x S' and
first, let +o,...,v% be some elements in I'y = Z" represented by geodesics of
cqual length. Notice that each «; is given by an n-tuple of integers 7, j =

1,...,n and the length is (Z“: (7;-'-)’)%, so that we may have k arbitrarily large
1=1

for every n > 2. Here we can glue together these geodesics in the category
K < 0 which means, algebraically, adding new generators ay,. .., a; to I’y and
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the relations 4§ = y;-1, ¢ = 1,..., k. Next, let us drop the assumption that
the geodesics have equal length. 1t still may happen that there is another flat
metric in T™ for which the new chosen geodesics v;, . . ., 7 have equal lengths
and then again the resulting group To = {T', a5 | 7 = vi-1} has K < 0. But
if no such flat metric exists, then Ty does not have K < 0. In fact, if Ty has
K < 0 then Ty = Z" must be realized by a flat torus (in the space V with
K(V) < 0 having m(V) = T) where geodesics conjugate in T'g necessarily
have equal length.

Semi-hyperbolic moral. The amalgamated products of semi-hyperbolic groups
over cyclic (or virtually cyclic) subgroups should be semi-hyperbolic. This
should be also true for HNN-extensions of ' but only if one can guarantee
the “equal length” condition. For example if there is an automorphism of
finite order of I’ permuting the cyclic subgroups in question.

Let us look at the above counter-example from a semi-hyperbolic view-point.
Even if the group Ty emerging after gluing v does not have K < 0 it may,
a priori, be semi-hyperbolic, though it appears rather unlikely. In any case,
if we take sufficiently many «, then Ty is definitely not semi-hyperbolic. For
example, if the set {v;} consists of all prime (i.c. non-multiple) geodesics of
length < 100", then the subgroup 1o C T has ezponential distortion (as an
elementary argument shows) which is incompatible with semi-hyperbolicity
because of the following

Important properties. Every Abelian subgroup A in a group I' with K < 0
is finitely generated and has bounded distortion in I'. Furthermore, if T has
no torsion then A is contained in a unique maximal subgroup bar A with
rank bar A = rank A (if one allows torsion, then there are at most finitely
many of such maximal bar A). All these properties are expected to be true
for the semi-hyperbolic groups I’ (and they inay be already proved by Alonso,
Bridson and/or Short for groups with equivariant bicombing, as the proof in
the case K < 0 entirely relies on the convexity of the displacement).

Remark. In the above example of Ty one can bypass these properties of A
by showing with some extra effort that the isoperimetry in Ty is exponential
(for this nonsensically large 100").

Specific questions. (a) Let T be an amalgamated product of two sinall cancel-
lation groups over cyclic subgroups. Does T satisfy the quadratic isoperimet-
ric inequality? (The answer should be “yes” if the desired semi-hyperbolic
theory exists.)

(b) Let V be a compact connected irreducible locally symmetric space witb
K < 0 and rank > 2. Take two closed geodesics in V of different lengths
and glue them together. Is the resulting HNN-extended fundamental group
T semi-hyperbolic? For example, does I’ satisfy the quadratic isoperimetric
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inequality? (Since the geometry of V is rigid in the category K < 0 one can
probably show without much ado that T is not of K <0.)

Amalgamation over non-cyclic subgroups. Here there are two problems. First
is to decide when a subgroup I'y C T is “convex” in this sense or another,
(e.g. realized by m; of a totally geodesic submanifold). The second question
is wben two such isomorphic subgroups are “isometric”. If we work in the
category K < 0, then we know for sure that every Abelian subgroup T,
is convex (and this is to be expected for the semi-hyperbolic case as well,
Here “convexity” may refer to some bi(combing) or to the existence of a
T'j-equivariant Lipschitz retraction I' — I'y). Also we expect that certain
“rigid” non-Abelian groups T are necessarily convex inside semi-hyperbolic
groups. For example, cocompact lattices I'y in simple Lie groups of R-rank >
2 may have such a rigidity (which would generalize some aspects of Margulis’
superrigidity).

Strong convezity. Let us observe that certain subgroups I'y C T may be
strongly convez which means relative hyperbolicity of I' O I’y with respect to
Ty (see [Gro}i4). This implies the existence of a I'y-invariant retraction I' —
', whose local Lipschitz constant exponentially decays as dist(y,I'}) — oc,
in the same fashion this happens for quasi-convex subgroups of hyperbolic
groups. For example, if [ is the fundamental group of a hyperbolic manifold
(with K = —1) with cusps, then each cuspidal (virtually Abelian) subgroup
is strongly convex in .

Isometry problems. Let us indicate the cases where the isometry of two sub-
groups I'; and T'; is a priori insured.

(1) Doubling. Take I' with a subgroup I' C I'. Now we take anotlier copy
of T and observe that the corresponding copy of ') is “isometric” to the
original. Thus the amalgamated product [" 1, T of the two copies of I' over
T’y is possible in the category K < 0 whenever Iy is convex in T, i.e. realized
by n; of a locally convex subset. In particular, this works if I') is an Abelian
subgroup in T. Then we expect such amalganated product [" 53, T to exist
in the semi-hyperbolic domain as well.

(2) Internal isometries. Let T be a normal subgroup of finite index in [V DT
where K (I'") < 0 and let T, and T; be two subgroups in T which are conjugate
in I'. Then these arc isometric, and if they are convex one can form the HNN-
extension T of T by gluing ['; to ['; with K < 0. Again this might work as
well in the semi-hyperbolic case.

(3) Rigid groups. Let 'y and [ be isomorphic subgroups which are rigid
in the sense indicated above. (For example, there are some rigid virtually
Abelian (crystallographic) groups I') D A = Z". Such a group I} is rigid if
the action r — yzv~! of ', on R™ == Z"®zR isirreducible.) Then if we realize
them by totally geodesic submanifolds V; and V; in V, these are isometric up
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to a scale factor and so the gluing is possible as in the case of cyclic subgroups.
ln particular, one can always amalgamate in the category K < 0 over rigid
crystallographic subgroups but in the general semi-hyperbolic surroundings
this appecars more difficult but still possible.

Remark. Amalgamation over non-isometric Abelian subgroups is, in general,
impossible in the category K < 0. For example, if such amalgamation be-
tween two torsion free crystallographic groups does have K < 0, then the
corresponding tori must have been isometric for some choices of the flat met-
rics we glue together. But I do not know if such amalgamated products are
still semi-hyperbolic in a certain sense.

(4) Strongly convez subgroups. Let T'y and Tz be isomorphic strongly convex
Abelian or virtually Abelian subgroups in I'y D I} and T}, D T';. Then we
expect that the amalgamated product T between I'; and I’} by a given isomor-
phism I'y & T'; is semi-hyperbolic whenever I'}, i = 1, 2 are semi-hyperbolic.
This is similar to what happens to the gluing of cusps described earlier, (which
suggests a possibility of certain HNN-extensions in this situation).

Remarks and questions on word hyperbolic groups. Let I' be a word hyperbolic
group and Ty C T' a quasi-convex subgroup. Then the amalgamation T of
two copies of I' over Iy is seini-hyperbolic in any conceivable sense (this is
easy to prove). Yet T need not be hyperbolic as was pointed out to me by
A. Casson at this meeting. For example, if Ty is realized as x, of a totally
geodesic surface S inside something with K < 0 and S intersects itself over a
pair of closed geodesics in S, then these geodesics give rise to a copy of Zx Z
in I". In fact the algebraic mechanism breeding this non-hyperbolicity is quite
apparent: every pair of non-torsion elements v and 7 in T, which are not
conjugate in Iy but are conjugate by some v in the ambient group I', prodnces
a pair of independent commuting elements in I'. A natural conjecture is that
the converse is also true: if the inclusion Ty C I induces an injective map on
the sets of the conjugacy classes, say [I) P [T, then T is hyperbolic.

Besides the non-injectivity of the map [I'y] — [I'] there is an asymptotic
source of non-hyperbolicity which may be a priori more general. To see this
we invoke the ideal hyperbolic boundary 8.I" and the limit set 9ooIy C 30T
(which is the ideal boundary of T for it is convex). Then we observe that if
there is some v in T outside I'y, such that ¥(8.11) C T meets 8, (recall
that T acts on 3,1, i.e.

(')ool‘l 07(6001’1) # Z,'Y € r- Fl,

then T is non-hyperbolic. In fact, if the above intersection is non-empty it
necessarily contains at least two points as a simple argument shows. Therefore
there exists a line £ in T (joining these two points) which lies within bounded
distance from I’y and 4T,7~?, and which gives rise (in an obvious way) to a
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quasi-flat, i.e. a quasi-isometric embedding R? — I". (If £ is invariant under
some 47 € I') N 4T 471, then this quasi-flat is periodic and reduces to Z x Z
sitting in T as we have seen earlier.)

Now, this asymptotic picture can be reversed.

Asymptotic criterion for hyperbolicity of amalgamated product and
HNN.-eztensiona. Let T and IV be word hyperbolic groups and T'y C T and
I, C IV quasi-convez mutually isomorphic subgroups where I', satisfies the
asymptotic disjointness condition for everyy €T — Ty, i.e.

3°°I‘| n ‘7(8001‘1) = 3. (t)

Then the amalgamated product of ' with T with an arbitrary isomorphism
[ o [ is a word hyperbolic group. Furthermore, this remains valid for the
HNN-eztensions of T with pairs of subgroups Iy and '} in [ where Iy satisfies
(*) and where, moreover,

aool‘l n aoor‘{l =@. (‘*)

The proof relies on the elementary properties of quasi-convex sets (see [Gro),,)
and is left to the reader.

Remark. The condition (*#) is not indispensable, as is seen in the Jorgensen
example where I' = Ty = I} is a surface group and where the equality Iy, = I}
is offset by the hyperbolicity of the connecting isomorphism I'y — I'}. The
hyperbolicity was made transparent in these examples by Bestvina-Feighn
(see [Be-Fe]) whose argument may apply to more general HNN-extensions
where @,y meets JI'}.

If one tries to reduce the algebraic conjecture on hyperbolicity of T to the
asymptotic criterion one iminediately stumbles into the following

Problem. Let Ty and I'; be quasi-convex subgroups in a hyperbolic group T
Does then

3°°(F, n Fz) = 6°°T1 n 600[‘2?

Or, at least, does the following implication hold true?
6001‘1 naool‘g # = Pl n l‘z CZ.

The latter question would have a positive answer if one knew that the exis-
tence of a quasi-flat in a semi-hyperbolic group A implied the existence of
Z x Z in A. This makes me feel I miss something obvious around here. (This
fecling proved to be correct as T. Delzant pointed out to me the following so-
lution to the problem. First, by hyperbolicity and quasiconvexity, each point
w 10 o6 (T1)N8os (T'2) gives rise to two sequences v, (i) € I'y and v2(i) € Ty, ¢ =
1,2,..., where both converge to w and satisfy dist(y(i),42(¢)) < const for
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all i = 1,2,..., since the sequence 47 (i) 12(i) € T takes only finitely many
values, we may assume, passing to a subsequence, that it is constant and then
the required points in Iy N T'; are furnished by 7 (3 )77 (i) = 72(j)73 ' (i).)
Ramified coverings. Ramified covering of spaces V with K < 0 (or K < 0)
whose ramification locus W has codimension two in V often carry metric
with K <0 (K < 0). The simplest case is where W is totally geodesic in V
but one may admit more general (singular) W (see [Gro},4, [Ch-Da)). Also
removing some (e.g. totally geodesic of codimension 2) W from V may leave
the condition K < 0 (or K < 0) intact but one should address here the
cocompactness problem. For example, if we remove a closed geodesic from a
hyperbolic 3-manifold, what remains can be made compact with K < 0 but
not with K < 0. (Strictly speaking, one does not truly need W of codimension
two for ramified coverings but rather a locally convex subset U C V whose
boundary AU in V admits a nontrivial covering. Thus one obtains a wide
variety of examples, especially if V is singular.)

Now we want to extend ramified coverings to the hyperbolic and semi-hyper-
bolic categories. If T is a hyperbolic group and Ty C T is a quasi-convex
subgroup one can see ramified coverings by looking at the boundary 0., D
3..T1. Namely, we take the I orbit of 3,0} in 8,5, called W,, C 85T,
and consider some ramified covering 3 of 8.." which ramifics over W, such
that the (localized at W) ramification data are I'-equivariant. For example,
we may take the universal covering or the one which ramifies with given
order p along W,,. Then the action of ' combines with that of the deck
transformation group on & and gives us a certain group I" acting on J with a
patural homomorphism ' — I'. 1n order to make the above meaningful one
should take care of the following two difficulties,

1. 8T and 8,I'), may be rather ragged spaces with no good covering
theory.
2. The action of T on 3,I" is by no means discrete.

let us indicate how one may approach these problems. First let 9, be
disjoint from 7(00,;1‘.) for all ¥ € T — T, and postulate that for cvery finite
system of elements v,,...,7, there ezists a unique maximal ramified covering

of 3,T; which ramifies with certain order p over U 7(8xT1). Then we take

the direct limit of the deck transformation groups of these coverings as the
subsets {y1,...,v:} exhaust 1" and observe that our T' makes sense in the
limit. All this perfectly works, for example, if 8,I" is a topological sphere of
dimension > 2 and 9, is a topological submanifold of codimension two with
(topologically) trivial normal bundle. (This does not work in the simplest case
where @,,T" is the topological circle S! as we did not properly take into account
the fundamental group of d,,1". We suggest to the reader to recapture the
ramified covers of surfaces by working in this S!.)
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Next, assuming we know how to define T, we try to decide when it is hyper-
bolic.

Claim. If different translates v(3.oT)), v € T, are mutually disjoint (unless
they coincide), B’ and Ao -- OooT'y are locally good enough for the covering
theory and m,(8cT) = 0 (just to make life easier) then the group I', defined
with given finite ramification indez on the orbit I'(8..T)), is word hyperbolic.

This follows by a simple quasi-convexity argument which we omit.

Non-hyperbolic generalization. The above construction of T does not imme-
diately extend to the semi-hyperbolic case as we lack (at least at the present
moment) an invariant notion of the ideal boundary 8..I". But there is another
route to define I which we shall briefly describe. First we need the notion
of the large-scale fundamental group of the complement T — I’} and then of

r- ij 4iT14;!. This may be done with the yoga of thickening of §1. As in

the }'l;lperbolic case, the situation is the friendliest if

(a) I is simply connected at infinity;

(b) T, is disjoint from yT1y~! at infinity for all ¥ € ' — I';. This means
dist(T'y — B(R), yThy™! — B(R)) — oo, where B(R) is the ball in T
around the identity of radius R — oco.

k

Then we can define the limit of tbe groups m, of T' — (J ymIy¥;™" at infinity
i=]

as {y;} — I and eventually construct I' with given ramification data.

So, it seems, there is a meaningful general theory of ramified coverings I* of
I’ with a given ramification locus (at the I™orbit of a subgroup I’y or a finite
collection of subgroups) but the details and examples are to be worked out
yet. But even when the general theory goes through we are still in need of a
useful criterion for T' to be semi-hyperbolic. For the moment, the only such
criterion | see (besides the geometry with K < 0) appeals to certain relative
hyperbolicity of I’} in .

Test questions. Let ' be a cocompact lattice in a simple Lie group G of
R —rank > 2 such that the corresponding symmetric space has no totally
geodesic submanifold of codimension two (e.g. G = SL.R,n > 4). Are there
subgroups I} C T with ramified coverings [ around them? Can such [ be
serni-hyperbolic?

Hyperbolic and semi-hyperbolic products. If a group I is hyperbolic relative
to a subgroup I'y C I' (or a finite collection of subgroups) then hyperbolicity
or semi-hyperbolicity of I'y implies the corresponding property of I, and a
similar situation appears in certain cases of relative semi-hyperbolicity.

Ezample. Let X be a metric space which is hyperbolic or semi-hyperbolic
in some sense (e.g. K(X) < 0) and let Xo C X be a subset bounded by
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a disjoint union of concave hypersurfaces (i.e. X — Xp is a union of disjoint
convex subsets). Then, if each component of the boundary is semi-hyperbolic,
then so is Xo. To make this precise let us stick to some bicombing definition
of semi-hyperbolicity. Thus we assume every two points in X are joint by a
“path” reasonably depending on the end points. Now, if the end-points lie in
Xo, the “path™ may go outside to the complement X — X, but then it crosses
some component of the boundary 9X, at two points (as the “convexity” of
83X, should be understood relative to the bicombing). Then, as X is semi-
hyperbolic, these two points are joint by a path in dX,, and this equally
applies (o all pairs of crossing points in different coinponents of 9X,. Thus
we obtain paths between pairs of points in X, whose dependence of the end
points is as good (Lipschitz) as that in X and in 3X,, provided there is
a certain coherence between the paths in X and 8X, needed to avoid the
following unfortunate situation: some path in X is accidentally contained in
X, but the bicombing of 3X, assigns to the same end points (contained in
3Xo) an entirely different path in X, lying quite far from the X-path.

This difficulty does not appear if X is hyperbolic relative to X — X, but
it is not clear how to achieve the coherence in the semi-hyperbolic situation
without making very stringent assumptions. To see what may happen, we
specialize the above discussion to the case where X is geodesically complete
manifold with K(X) < 0 acted upon by [' such that Xj is -invariant and
Xo/T is compact. We assume furthermore, that each “boundary subgroup”
of I, i.e. the subgroup sending a component of 3Xj into itself is Abelian. We
have already met such sitnation for K(X) = —1, where these components
were horospheres with flat induced metrics. Now, the induced Riemannian
metrics may be non-flat (and then the internal curvature of Xy is not < 0).
Yet we expect X, is semi-hyperbolic in every conceivable sense. We know
already that Xj is as good, isoperimetrically speaking, as the Euclidean space
(sce §5) but now we are also concerned with (bi)combing. If K(X) < —x <
0 then we are in a relative hyperbolic situation where the existence of I'-
invariant bicombing on X, is iminediate with the above construction, but it
is unclear how to prove this in general.

Factoring away random hyperbolic geodesics. We have already met on several
occasions with the following situation. Given a manifold V with K(V) <0
and a “long random” geodesic which spends a “sufficient” time in the region
in V where K < —¢ < 0. Then the normal subgroup generated by + is free
and the factor group T of I' = x((V) obtained with the relation [y] = 1 is
semi-hyperbolic in the sense that the tight surfaces S in the space V (obtained
by attaching the disk to V along ) are A-Lipschitz to those with K < 0 for
A depending on V but not on S. Notice that the actual condition on v which
leads to this conclusion becomes clear in the course of the proof as we look at
tight surfaces in V. (This condition contains, as an ingredient, a geometric
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version of the combinatorial 1-condition for a suitably large n expressing the
idea that no two pieces of v follow each other closely for a significant amount
of time. It takes a certain effort to show that this is satisfied by generic
long geodesics in V in order to arrive at our “random” formulation, compare
[Grojss.) Also notice that many aspects of the passage from I to I' remain
unclear. What is, for example, the most general condition on 7 where the
surfaces work? (We know that 4 may be hyperbolic without a single bit of
actual negative curvature as happens, for example, for ramified coverings of
unflat manifolds.) Then we do not know how to prove (or disprove) that T
has a good enough (bi)combing to be promoted a full member to the semi-
hyperbolic ranks.

Now, let us look at a particular instance of I' where the above problems are
happily resolved. We take the free product I' = T +I'; of two semi-hyperbolic
groups I'y and T'; and we want to show that adding a generic relation (or finite
collection of these) to T does not disturb semi-hyperbolicity. We start with
the geometrically transparent situations where I' = = (V)), i = 1, 2, for
K(V) < 0 and then we produce a non-compact (nnlike V;) space V with
x1(V) = T having strictly negative curvature K(V) < —1. This V has two
cusps corresponding to V; so that the hyperbolicity of T relative to I'; becomes
geometrically visible. Here is

The construction of V. Take V! = V; x R, with the Riemannian metric
gl =¢etg+dt? i =1, 2 and observe that K(g;) < 0 implies K(gf) < -1
as a simple computation (or an argument) shows. Both V! have convex
“boundaries” V; x 0 and one can join them by a bridge between boundary
points, so that the joint space V also has K < —1 with compact convex
boundary and which is isometric, sufficiently far away from this boundary to
tbe disjoint union of V) and V]. If one cuts away the infinity, i.e. takes V; C V,
that 13 V minus ¥ x [¢,00) UV, x [t, 00) for some (large) ¢ > 0 one obtains a
space With concave boundary (and so not having K < 0 near this boundary
in the CAT sense unless the intrinsic curvature of this boundary has K < 0,
compare (Grojs). Now, we realize the relation we want to add to I by a closed
geodesic 7 in V and we take V; with a sufficiently large ¢ so that ¥ C V,. Now,
we know perfectly well when V is hyperbolic, i.e. the universal covering of V
is hyperbolic in the sense of [Gro}y4, since V has strictly negative curvature. If
this is the case we end-up in (almost) the same situation we started with: the
group T is hyperbolic relative to I'; and T'; and so, by our earlier discussion,
it inherits all semi-hyperbolic features from I'y and T';. (‘The situation is not
quite the same as now we have hyperbolicity rather than K < —¢ < 0 which
is, a priori, a weaker condition.) All of the above equally applies to finite
collections of relations and leads to the following

Coneclusion. Let T be obtained from T' = Ty * I'; by adding a system of
relations satisfying a sufficiently strong small cancellation (in the broad sense
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of [Gro)14) condition. If the groups Ty and I's have K < 0, then T is semi-
hyperbolic (in any conceivable sense).

Remarks. (a) This obviously generalizes to free products of several (2 2)
groups and also to certain amalgamated products and HNN-extensions.

{b) The next logical generalization would be that where I'; are semi-hyper-
bolic. Unfortunately, the disk attaching procedure in the hyperbolic frame-
work needs the construction of the geodesic flow which has been realized so
far only for word hyperbolic groups (see [Gro],4). However, 1 feel certain this
should work in the present case. Moreover, one may, probably, add to T, 'y
sequences of random relations of increasing length as in the word hyperbolic
case.

Ezample. Let T} and I'; be cocompact lattices in simple Lie groups of R-
rank > 2. Then the groups T obtained from T, * I’z with small cancellation
relations are semi-hyperbolic (but have no apparent metrics with X < 0) and
may serve as a test ground for the semi-hyperbolic theory. Notice, that the
starting groups [; are very special (T-property, often congruence subgroup
property, no normal subgroup of infinite index etc.) and one wonders how
this shows up in T

Scaling and ultralimits. If X with a given metric dist has K < 0 then so
does (X, Adist) for all A > 0, in particular for those < 1. So, when X is
simply connected, it is no surprise that the asymptotic cone Con,, X also has
K < 0 whichever ultrafilter w is used for Con,,. This is obvious, since the
CAT-inequality defining K < 0 appeals to the geometry of quadruples of
points in X and is scale invariant. In particular, K{X) < 0 makes Cone X
contractible. The situation is somewhat different for the today’s definitions
of semi-hyperbolicity as these impose restrictions on k-tuples of points in X
with unbounded k. Yet, as these conditions reduce (in the known definitions)
to the Lipschitz properties of certain maps, there is no problem of passing to
ultralimits. For example, the cxistence of an [E-C-H-P-T]-combing implies
that for Con, X as well as the coutractibility of Con, X (but this is far
from truth for Gersten’s combing). On the other hand the passage of semi-
hyperbolic properties from Con,, X back to X is morc difficult (at least for the
moment). In particular, there is no working definition of semi-hyperbolicity
of the following form: there is @ number k, such that every k-tuple of points
in X ...

Ezample. Say X is (A, k)-semi-hyperbolic if every k-tuple of points is A-bi-
Lipschitz equivalent to a k-tuple of points in some space with K < 0 (in the
CAT-sense). Now, assume this is satisfied for some A, say A = 100 and a very
large k = k(A), e.g. k = expexp (100}). Does then X look semi-hyperbolic
provided it is a geodesic space? It scems the geodesic condition is not enough
and one should modify the above definition by bringing it to the form: for
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every k-tuple of points in X there ezists a K-tuple such that ... Also one
may try to adjust such a definition to a given isometry group T acting on X.

Stability and localisation of K < 0 and semi-hyperbolicity. The geometry
of K < 0 may become virtually unrecognizable if we apply a A-bi-Lipschitz
homeomorphism with large A. Yet if A = 1+ ¢ for small £ > 0, many qualita-
tive features remain intact. Similarly, a small perturbation of basic geometric
features of K < 0 remains “semi-hyperbolic” in some definite geometric sense.

Ezamples. (a) Suppose that the convexity condition on the distance function
is replaced by

dist(z1, z3) < A(tdist(zy, z2) + (1 — t) dist(y1,y2)} + d,

(compare 6.B) where z;, i = 1, 2, denote the points on some minimal geodesic
segments between z; and y; dividing the segments in the proportion ¢ : (1 —t)
(we do not assume such segments are unique). Then if d = 0 and A =
(1 + €) dist(z), z3) for a small £ > 0, e.g. € = 0.1, it is easy to recapture basic
qualitative features of K < 0. For example, one can fill in every geodesic
simplex using the subdivisions as in Fig. 16.

INININININ/N
INANINONNIN/N
\NNNNNN

Fig. 16

Every act of subdivision diminishes the size of simplices by the factor 2 ¢
which does make them smaller for € < 1 and forces the process eventually
to converge. Thus one proves that the space X is contractible. (If we allow
d > 0 the same remains valid on the large scale. For exainple, Con, X remains
contractible.)

(b) Suppose that every closed curve of length £ in X bounds a disk of area
< (14¢€)2x£2. 1s then X contractible? (Tt seems easy to prove m(X) =0 by
looking at a minimal sphere in X with the usual conformal parameter.)
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() It would be tempting to try to find for a given (semi-hyperbolic) group T
the best (i.e. smallest) € so that I' admits a I'-invariant metric which is e-close
to K < 0 in one sense or another. But any specific question seems premature
at the present state of the art as we are not able so far to distinguish between
K < 0 and semi-hyperbolicity and/or to find examples with small £ which
yet cannot be made zero.

Stability of the flow of chambers. This is another kind of stability which
appears in (many) uniflat spaces X with K < 1. To keep it simple, let
X be a Cartesian product of two simply connected spaces X; and X; with
K < —€ < 0. Then the 2-flats in X are products of geodesics in these spaces.
Now we take a quasi-flat i.e. a A-bi-Lipschitz (on the large scale, but this is
immaterial) embedding f : R? — X. If A = 1 + ¢ for a small positive ¢, e.g.
€ = 0.1 as earlier, then there is a (necessarily unique) flat asymptotic to our
quasi-flat, but this is not so for large €. To see this we observe that the Tits
boundary of X is the graph whose vertex set is the disjoint union of 9 X)
and 0, X3 and the edges are 1), z,] for all z; € 8,,X, and 23 € 3,,X;. There
is an obvious 1 — 1 correspondence between the flats in X and simple circuits
{cycles) in this graph consisting of exactly four edges. On the other hand, the
geodesic cone in X over every simple 2m-circuit is a quasi-flat which is far
from any flat if 2m > 6. Finally one knows since long that every quasi-flat
with A = 1 + ¢ wherte ¢ is small is shadowed by an actual flat. In fact the
foliation of the space of flats, (i.e. isometric maps R? — X) into R?-orbits is
stable (e.g. see [Grojg).

Remark. The above discussion extends to the classical uniflat spaces which are
Cartesian products of symmetric spaces and those with K’ < —¢ < 0. Yet the
geometry of quasi-flats still needs clarification. Namely one suspects that in
reasonable spaces (e.g. sufficiently uniflat or sufficiently homogeneous) quasi-
flats of mazimal dimension are asymptotically conical. Let us indicate some
arguments in favour of this conjecture. First let us look at the plane P(= R?)
topologically embedded into a 2-dimension polyhedron Y with K < 0, where
we assume the isometry group of Y is cocompact. Suppose that our P with
the (piecewise linear) metric is quasi-isometric to the flat R2

Claim. The induced metric in P is flat outside a compact subset.

Proof. If a topological plane P with a metric with K < 0 is bi-Lipschitz to
the flat R?, then [ K(p)dp < oo, since the area A(R) of the R-ball B(R) in

P
P is related to the total curvature of this ball

K(R)= [ K(p)dp
B(R)
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K K R
A(R)~//l+/K(R)dR.

Thus
/K=oo=?A(R)/R’—voo as R — oo.
P

Now, at every point p € P C Y, where it is not flat there is a definite (non-
zero) amount of integral negative curvature, as the metric in Y is (so we
assumed) piece-wise linear. This proves our claim.

Now, for a 2-dimensional quasi-flat Q in a general X, we pass to Con, X
and obtain some P C Con,, X which is bi-Lipschitz to R2. If our asymptotic
cone is “polyhedral”, e.g. the product of two R-trees as for the above X =
X, x X; or a 2-dimensional Euclidean R- building (as it should be for a
symmetric space X of rank 2), then P is asymptotically flat and hence conical
at infinity in Con, X. This indicates that Q is asymptotically conical in X
in a certain weak sense and we expect there is an actual geodesic cone in
X within bounded Hausdorff distance from @ as suggested by the above
mentioned stability of the foliation of flats. (In fact, the proof of this stability
may do the job for our Q.)

Remarks. (a) Our discussion extends with a minor effort to k-dimensional
quasi-flats Q for k > 2 (and corresponding polyhedral P bi-Lipschitz to R*).

(b) What we have just shown indicates that maximal quasi-flats Q in (a
reasonable) X are divided in countably many classes according to the total
amount of curvature, where we find on the bottom quasi-flats @ asymptotic to
flats. It would be nice to clarify the picture in the simplest case of 2-polyhedra
with K < 0 and next for the small cancellation groups.

Localization and recognition of semi-hyperbolicity. The property of a group I’
being §-hyperbolic is, in principle, recognizable in terms of an arbitrary pre-
sentation of I', because hyperbolicity is a self-reproducing property: if a ball
of a fixed radius in T is sufficiently hyperbolic then larger balls are even more
hyperbolic. (This is similar to strict monotonicity of functions f(t) locally
recognizable by f’(t) > § > 0.) But the condition K < 0 is not like that at
all! For example the round two-sphere of huge radius looks everywhere locally
as if K = 0, but on the global scale it develops very differently from R2. This
leads to the difficulty of recognition of semi-hyperbolicity in groups. Even in
the friendliest environment of small cancellation groups (or even those given
by 2-polyhedra with K < 0), we are lost if we come across a non small can-
cellation presentation of such a group in a non-hyperbolic case. Yet there is
some hope that a local recognition of (some) semi-hyperbolicity is possible,
because, intuitively, there are two mutually exclusive modes of growth (or



6. Semi-Hyperbolic Spaces 173

divergence) in a space with K < 0, which are linear and ezponential. The
linear growth is confined to the maximal (quasi)-flats and these (quasi)-flats
diverge exponentially (more or less like geodesic rays for K < —¢ < 0). Now,
as we know, the exponential divergence is a self-reproducing phenomenon and
so the difficulty resides where the growth is linear. But, despite the above
spherical counter-example, there is a localizable geometric criterion, namely
the polynomial growth criterion for nilpotency (which includes flatness cor-
responding to Abelian groups). Unfortunately the proof of this theorem in
[Gro)s is very non-effective and recognizability follows by a non-constructive
compactness argument.

There is another form of the localization-recognition problem, where we have
ametric on T which is e-close to K < 0 on a large ball and we ask if this makes
all of T close to K < 0. This is similar to the corresponding geometric prablem
of studying spaces V of almost negative curvature, which means K < +e¢, for
a small € depending on some geometric characteristic of V (compare [Gro),
[Fu-Ya]). Here is a typical problem of this type geometers are unable to settle
yet. Let Xo be an irreducible symmetric space of rank > 2 (and K < 0, as
usual). Consider a compact Riemannian manifold V where every unit ball is
(1 + €)-bi-Lipschitz to such a ball in X,. Does there exist a universal upper
bound € = £0(Xo) > 0 on &, such that £ < g9 would imply, for example, that
V is an aspherical space?

Generalized semi-hyperbolicity. I believe the true notion of semi-byperbolicity
must include nilpotent groups. For example, nilpotent groups with dilations
are self-similar (for suitable Carnot-Caratheodory metrics) and thus should
be regarded as flat objects. Then every nilpotent group I' has a unique asymp-
totic cone Cone, I' which is a contractible space as it should be for K < 0.
In fact, the Lipschitz contractibility of Con., X may turn out a viable candi-
date for a definition of scmi-byperbolicity as it agrees with (bi)combings of X
satisfying polynomial bounds on the Lipschitz constants. Various operations
over semi-hyperbolic groups discussed in this section naturally extend to the
more general nilpotent situation. For example, every (non-cocompact) lattice
in a simple Lie group of R-rank one is semi-hyperbolic in the nilpotent sense.
But what we do not have for nilpotent groups is anything resembling uniflat
spaces. The only examples, where flat = Abelian may be replaced by flat =
nilpotent appear as central extensions of the flat = Abelian semi-hyperbolic
spaces and alike. It scems the nilpotent groups lack some (reflection) sym-
metry inhercnt in the Abelian groups. But one should prove yet that no true
nil-uniflatness exists.

Finally we may ask ourselves if one can (and should)} work out even more
general notions of semi-hyperbolicity in order to include polycyclic groups
and/or non-cocompact lattices in Lie groups. These groups do have some
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remarkable geometric features and one may be tempted to scrutinize them

by axiomatizing. For example, many (if not all) polycyclic groups X become

hyperbolic after the following stabilization X ~~— X' = X x R" with gx. =

elgx + Y e**dt?. (The simplest instance of that, g ~~— e'g + dt?, turns
=1

K<0on Xto K<—e<0on X’'=X xR, as we have seen earlier.)
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7. Hyperbolic Groups

Hyperbolic groups and K < 0; hierarchy in the hyperbolic ranks; pinching and
conformal geometry at infinity; round trees and strongly branched polyhedra;
Kahler and anti-Kahler groups; uniform embeddings and a-T-menability.

7.A. Hyperbolic Zoo. We start our discussion by enlisting the basic known
examples of word hyperbolic groups.

1. One-dimensional groups I'. These are the word hyperbolic groups whose
hyperbolic boundary 3T has topological dimension zero. One can easily
show that Hypdim[" = 1 & T is virtually free, (i.e. T contains a free group
of finite index), where

Hypdim " = dim 9T + 1.

Remark. One could use here the asymptotic dimension as, obviously,
HypdimI’ =1 & AsdimT =1& Asdim,I'=1,

for word hyperbolic groups T. In fact, a theorem by Bestvina-Mess (see [Be-
Me]) implies that HypdimT > Asdim] for all word hyperbolic groups T.
Furthermore, if the boundary @,,I" is locally contractible, one can easily prove
the opposite inequality by mapping (thickenings of I') to a (geodesic) cone
over 3T, but the general case remains open for the moment.

II. Two-dimensional groups. Here there are several ilnportant subclasses.

llk<o. Fundamental groups of compact 2-dimensional polyhedra and orbihedra
with negative curvature. Notice that 2-dimensional polyhedra with K < 0 are
readily available. For example, every polyhedron P built of i-gons with¢ > 7
has negative curvature provided every two i-gons meet in P over a common
face (i.e. an cdge or a vertex, but not over several edges).

7. Small cancellation groups. Here we allow any kind of a small can-
cellation condition (not only 1/7) which ensures hyperbolicity. Notice that
already 1/7-groups form a huge class. Namely, if we fix the number k& > 2
of generators and look at all prescntations with £-relations given by words of
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length A which is large compared to £, then a majority of such presentations
will be 1/7. (See [Gro},4, [Cham] and §9.)

Ilaeq. Sequentially random groups. Fix k generators for k > 2 and consider
sequences of words w,,...,w,, where the length of w; fast grows with ¢, e.g.
length w; ~ X for a large A. Then again a dominating majority of the groups
given by such presentations are word hyperbolic of dimension two (see [Gro],,,
[Cham]). Here, (unlike the small cancellation case) we may have sequences
of word hyperbolic groups I'e = (11,...,7% | w1,...,we), £ =1, 2,..., which
give us in the limit interesting groups 'y, of infinite type.

II1. Polyhedral groups with K < 0. Let P be a compact polyhedron of dimen-
sion n with piecewise linear (i.e. Euclidean) metric of non-positive curvature
(i.e. CAT(0)). Then there is a simple geometric criterion for hyperbolicity of
the universal covering P of P and hence of the fundamental group I' = my(P).

No flat eriterion. T is word hypcrbolic if and only if there is no isometric
embedding Ry — P.

There is also a local version of this critcrion which we use here to define
K < 0. Namely, we say that tbe curvature vanishes at some face F' of P (our
P is built of convex Euclidean polyhedra or something like that) if there is
an isometric map of a domain D C R? into P, say [ : D — P, such that the
pull-back I='(F) C D is non-empty and is strictly contained in D (i.e. does
not approach the boundary of D). Then we say K{P) < 0 if K(P) < 0 and
the curvature vanishes at no face.

Remarks. (a) The above definition is similar to the standard one-layer small
cancellation condition for 2-polyhedra (e.g. see 4.7.A in [Gro|,4), except that
we presuppose here that K < 0. Tt would be nice to work out a multi
dimensional one-layer condition which would yield hyperbolicity (or semi-
hyperbolicity) without any assumption on the curvature.

(b) One might generalize the above definitions by allowing metrics which have
constant curvature «r < 0 on every face F of P (our piecewise lincar metrics
have xg = 0 for all ¥ C P). This may seem at first sight a considerably
larger class including, for example, compact manifolds with constant negative
curvature (as these can be subdivided into convex cells). But probably, every
metric with xr < 0 can be deformed to one with xr = 0 without disturbing
the property K < 0. (One may need first to subdivide P.)

(c) The n-dimensional polyhedra with K < 0 gencralize, formally speaking,
those of dimension 2 defined in [1g¢o. But the experience shows that the case
n = 2 is rather exceptional. Namely, there are, in a certain sense, far more
2-dimensional polyhedra with K < 0 than for n > 3, as the known combi-
natorial construction of higher dimensional polyhedra with K < 0 arrives by
a few very restricted routes, such as the hyperbolization (see 3.4 in [Gro))4)
and ramification of Davis’ reflection polyhedra, where the simplest example



7. Hyperbolic Groups 177

is the flat n-torus ramified over a collection of mutually erthogonal subtori
of codimension two (see {Gro}s). Notice that there may be some additional
constructions in the low dimension like 3 and 4. For example, one can build
a lot of K < 0 in dimension 3 out of dodecahedra. (Warning. Mike Davis
recently informed me that the “hyperbolized polyhedra” in [Gro]y4 are, in
fact, non-hyperbolic starting from dim = 4, as they may contain flat tori. On
the other hand a true hyperbolization procedure based on hyperbolic cutting
and pasting has been just worked out by Ruth Charney and Mike Davis. (See
“Strict Hyperbolization™ by R.M. Charney and M.W. Davis, Preprint, Ohio
State University, August 1992.)

One common feature of the known higher dimensional constructions is that
they lead to groups I which do not satisfy Kazhdan's property T. In fact, the
groups of hyperbolized polyhedra decompose into amalgamated products and
the reflection groups are a-T-menable (see [B-J-S]) according to the following
definition (compare [Gro);s).

A-T-menability. A locally compact group G is called a-T-menable if it admits
a proper isometric action on the Hilbert space R*, where “proper” means that
for every bounded subset B C R* the subset Ag C G consisting of those
g € G for which the translate g(B) meets B is precompact.

This property is opposite to the Kazhdan T-property which requires every
isometric action of G on R* to have a fixed point. Thus, if G is both T and
a-T-menable, then it is compact.

Remark on R® ~ Hge. One can replace R* in the above discussion either
by the real or the complex infinite dimensional hyperbolic space as the three
spaces R®, HY and H@ are equivalent in the following sense: each of these
spaces, say X, can be embedded into another one, say Y, such that

(a) the map X — Y is Lipschitz and the induced metric on X is uniformly
bounded from below by disty, i.e.

disty (z1,z2) > a(distx(z1, Z1))

for a function a(d) satisfying a(d) — oo for d — oo.

(b) Every i1sometry of X extends to an isometry of Y; moreover, there is a
liomomorphism Iso X — IsoY which makes our map X — Y equivariant.

Proof. The required embedding of R* to H is the one which identifies R™
with a horosphere in Hg. Also the embedding HY — H is obvious as H®
appears as a complexification of Hg°. Then one constructs the emnbeddings
Hg, H¥ — R™ by prescribing the ambient metric in terms of the hyperbolic
metric by

distge = (d.isty)%.
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This distge is Hilbertian by [Fa-Ha). The remaining embeddings HF —
Hg and R — H@ are obtained by composing the ones we have already
constructed. Q.E.D.

Note that our embedding H@ — Hy® is rather degenerate as the isometries
of H® extended to Hg® fix a point at the ideal boundary of Hg>. We shall
see later on that this is in the nature of things.

Questions. Are polyhedral groups I' with K < 0 a-T-menable or at least
non-T? (Maybe this becomes true if one manages to isolate and rule out the
low-dimensional phenomena.) If the answer turns out negative one may seek
interesting homomorphisms of such ' to O(k,00) for k > 2. (Recall that
O(1,00) is the isometry group of Hg’.)
1V. Hyperbolic lattices. These are the lattices in the Lie groups T of R-rank
one that are:

O(n,1) acting on Hg,

U(n,1) acting on HZ* (where 2n is the real dimension),

Sp(n, 1) acting on Hg", and

F;* acting on the hyperbolic Cayley plane H{
(such a lattice I is byperbolic if and only if G/I" is compact but the essential
properties of non-cocompact lattices are the same as for cocompact ones).

The basic common feature of the cocompact lattices I' C G is the large size
of the quasi-isometry group Qisol’ = QisoG = Qiso X for the underlying
hyperbolic symmetric space X. Namely this group is transitive on the ideal
boundary 8T = 8G = 8X; moreover, it contains a compact subgroup which
is transitive on this boundary. (Notice that the one-dimensional hyperbolic
groups have equally large Qiso but no other example seems to be known.
Possibly, there are highly syinmetric hyperbolic 2-polyhedra with large Qiso,
compare [Ben},_3, [Ba-Br], [[lag).) Probably, this symmetry is cbaracteristic
for lattices and in any case there must be many quasi-isometry characteriza-
tions for lattices because every group quasi-isometric to a lattice in G (and
hence to G) is (by now known to be) commensurable to a lattice in G. (The
most difficult case of G = O(2,1) has been recently scttled by Casson and
independently by Gabai.) One also believes that lattices can be character-
ized by a presence of rather weak invariant geometric structures. Here is a
standing

Conjecture. Let the ideal boundary of a word hyperbolic group I' admit a
[-equivariant structure of a C?-smooth manifold (which necessarily must be
a sphere). Then T is a lattice. (Notice that one cannot relax here C? to C',
see [H-P].)

As we go from O(n, 1)-lattices to (those in) U(n, 1) and then to Sp(n,1) and
F;? there is a strong fceling of an ascent. For example the U(n, 1) lattices
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are more scarce than those in O(n,1) but they are tighter knit than O(n, 1)-
lattices. And the lattices in Sp(n,1) and F;* are even more scarce and tight.
Here are specific properties giving this feeling.

(i) Surgery. One can cut and paste manifolds of constant negative curvature
along totally geodesic hypersurfaces and derive new hyperbolic lattices (and
non-lattices) from given ones. Thus one can “interbreed” arithmetic lattices
and produce non-arithmetic lattices in O(n,1) for all n > 2. Also one can
produce a variety of interesting polyhedral groups (see III above) starting
from O(n, 1)-lattices (but the full extent of the hyperbolic surgery is not yet
revealed, compare [Gr-Piaj, [Gr-Th}).

The “surgery” becomes quite limited when one turns to U(n, 1)-lattices,
though the complex hyperplanes (of real codimension 2) can be used in a
nontrivial way. This was shown by Mostow who found, among other things,
non-arithmetic (complex reflection) lattices in U(2,1) and U(3,1). (It is un-
known if there are non-arithmetic lattices in U(n, 1) for n > 4.) But when we
finally turn to Sp(n,1), n > 2, and F;?® no (apparent) surgery is available,
as all totally geodesic submanifolds have codimension > 4, and one knows
that all lattices in these groups are arithmetic.

(i) Quasi-isometries. The quasi-isometry group of O(n,1) is the largest
possible as it consists of all (quasi-conformal) transformations of the sphere
51 = 9,0(n,1). Next, for I/(n,1) this group consists of the transforma-
tions of $?"~! preserving the standard contact structure on §?"~'. This is
still an infinite dimensional group albeit a much smaller one than the group
of all transformations. Bnt for G equal Sp{(n,1), n > 2, and F; *° the quasi-
isometry group acting on JsG equals the group G itself by a theorem of
Pansu (see [Pan),). (There is a more general conjecture, stated in a letter of
Margulis to Prasad about 15 years ago, claiming that every quasi-isometry
of a symmetric space or a Euclidean building is parallel to an isometry, apart
from the cases derived from O(n, 1), U(n,1) and automorphisms of trees.)

Notice that (1) and (ii) indicate that the internal symmetry of a lattice de-
creases as we ascend from O(n,1) to Sp(n,1) via U(n,1). The following
fundamental properties of these lattices I' demonstrate a decrease of the ez-
ternal symmetry as well as a certain increase of a kind of density of I' which
can be thought of as a properly measured excess of the number of relations
[ over the number of generators.

(i) T and a-T. The group O(n,1) and U(n, 1), and hence their lattices, are
a-T-amenable while Sp(n,1) and F, (along with their lattices) are Kazhdan
T. (The a-T-menability follows from the carlier Remark on R® ~ Hg%.. The
T-property for these groups is due to Kostant, see [H-V].) This imposes
strong restrictions on homomorphisms between sucb groups as
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Every homomorphism of a T-group lo an a-T-menable one has finite (or
precompact if we allow non-discrete locally compact groups) image.

This is obvious with our definitions. So we see that there are no homomor-
phisms with unbounded images from Sp and Fy ®-lattices to U(n,1) (and
hence to O(n, 1)) and we shall see soon that there are very few homomor-
phisms from U-lattices to O(n, 1) (including n = oo).

Remark on Px¢o. The polyhedral groups with X < 0 seem to fit on the
bottom of this hierarchy lattices just next to the O-lattices (though only very
exceptional polyhedral groups are isomorphic to O-lattices). Here are specific

Conjectures. Every homomorphism of an Sp- or F,; ?°-lattice to a polyhedral
group T has finite image. In fact every measurable I-valued cocycle on such
a lattice is expected to be equivalent to a bounded one. Also every homomor-
phism of a U-lattice to I’ must factor through a subgroup in T’ coinmensurable
to a surface group. (These conjectures probably can be approached via har-
monic maps of pertinent locally symmetric spaces and foliations into P as
suggested by the results for maps into buildings, sce [Gr-Sch).)

(iv) Superrigidity. Consider a group T discretely and isometrically acting
on a Riemannian manifold X and the same I' acting isometrically (but not
necessarily discretely) on another Riemannian manifold, say Y. 1f Y is con-
tractible (as it is in our story) then there exists a continuous I'-equivariant
map fo : X — Y which is unique up to equivariant homotopy.

Question. What is the best geometric representative f; in the [-equivariant
homotopy class of f,?

Of course one may expect a meaningful answer only if X and Y are rather
special manifolds. The following theorem provides an answer.

Superrigidity Theorem. Let X be a symmelric space and T a discrete isom-
etry group with Vol(X/T) < oo, such that no subgroup [’ C T of finite indez
admits a splitting T' = T\ x I}, where I} is a U(n,1) or O(n,1)-lattice for
n > 1. Let Y be another symmelric space with an isometric T action and
fo: X =Y an equivariant map. Then fy is T'-equivariantly homotopic to a
untque geodesic map fi. (Recall, a map X — Y is geodesic if its graph in
X x Y is a totally geodesic submanifold.)

This theorem for rank X > 2 is proved by Margulis using ergodic theory and
the remaining case where X = H§" or H{ is due to Corlette who relies in
his proof on the theory of harmonic maps. (The mixed cases of split T easily
follow from these two.)

Remarks on generalizations. The above theorem generalizes to Y (and some-
times X) being Euclidean buildings (and products of buildings and sym-
metric spaces, see [Mar]s, [Gr-Sch]). Also there are generalizations to some
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cases where Y is an infinite dimensional symmetric space, such as Y =
O(k,00)/O(k}) x O(o0). In fact, the theory of harmonic maps works when-
ever the target space Y has K(Y) < 0 even if dimY = oo. Let us make a
precise statement in the case where X/T is compact and Y is a smooth Rie-
mannian manifold of finite or infinite dimension with an isometric action of
I. Ideally, we would like to homotop a given map fo : X = Y to a harmonic
map [ : X — Y by a homotopy of I'equivariant maps, where a map f is
called harmonic (in the present framework) if it minimizes the energy that
is | |IDf]? dz. (This integral makes sense as the norm of the differential
x/r

is T-invariant.) But, this may be impossible even if dimY < oo. Take for
example a parabolic action of I' = Z on Y = H™ which fixes a single point
on the ideal boundary 3., H™ and let X = R with the obvious action of Z.
Then the energy minimization process tries to move every I-equivariant map
R — H™ to this fixed point which does not belong to /™ and so the process
diverges. Yet we can recover the convergence if we allow a modification of
the space Y in the course of minimization (compare “plusification” in 6.B).

(Ultra)limits and weak containments between I'-spaces. Let (Yi,y;) be a se-
quence of pointed metric spaces with isometric actions of a fixed group T.
One can define, using an ultrafilter, a certain huge limit [-space but this
limit will appear in our discussion only as a figure of speech. We say that
a [-space Y’ is I-contained in a sublimit of Y; if the following condition is
satisfied.

(#) For every finite subset Z C Y there exist injective maps p,, : Z = Y], for
{, - 00, such that

(1) dist(z,yi,) < const, forallz€ Zand j=1, 2,....
(ii) The metrics on Z induced from Y;, converge for j — 0o to the metric
disty: |Z.
(iii) The (partially defined) action of I on the image of Z in Y;, converges to
the action in Y’. That is, if 2/ = y(2) € Z for z € Z and 4 € T', then

dist (s, (=), 7(m;,(2))) 2, 0-

Next, we say that a [-space Y’ is weakly '-contained in Y if there exists a
sequence y; € Y, such that Y’ is -contained in a sublimit of the sequence
(Y,v:). (This agrees with the corresponding notion in the theory of unitary
representation as it is used in Kazhdan’s definition of T : a group T satisfies T
if whenever an 1sometric action of I' on the Hilbert sphere S C R™ weakly
contains the trivial action of I' on the one-point space, the action has a fixed
point in S*.)

Now we return to f; : X — Y and reformulate the basic existence theorem
due to Eells and Sampson in our terms (compare [Gro]z;, [Gr-Sch]).
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If K(Y) < 0 then there ezists a Riemannian manifold Y’ with a T-action
whech is weakly T-contained in Y and which receives a I'-equivariant harmonic
map X — Y'. Furthermore, if Yis strongly complete (see below) then one
can choose Y’ isometric to a totally geodesic subspace inY.

Definition. A metric space Y is strongly complete if every separable metric
space Y’ which is weakly contained in Y admits an isometric embedding into
Y (where “weakly contained” means that for every finite subset Z C Y” there
exist embeddings u; : Z — Y, such that the induced metrics converge to
disty |Z as ¢ — oo).

Ezample. Finite dimensional homogeneous Riemannian manifolds are (ob-
viously) strongly complete. What is more interesting is the strong com-
pleteness of the “classical” infinite dimensional symmetric spaces, such as

R=, $°, H®, O(k,00)/0(k) x O(co) etc.

We conclude our brief discussion on the use of harmonic maps for proving
rigidity by recalling that the final step, harmonic =p geodesic, is achieved
with Bochner formulas which are completely insensitive to the dimension of
the ambient space Y and that such formulas are known for almost all (some
people may know them by now for all) symmetric spaces X which contain
no Hg and HZ-factors (compare the superrigidity theorem). In these cases
the existence of an action of ' on a symmetric space Y (of finite or infinite
dimension) implies (at the very least) that either this action weakly contains
the trivial action or Y contains a totally geodesic subspace isometric to a
factor of X (or to X itself if X is irreducible). Furtlier discussion on rigidity
and related matters mentioned in this section appears in [Gr-Pa].

On the failure of superrigidity for O(n,1) and U(n,1). It is casy to make up
examnples of cocompact lattices I' C O(n,1) and TY C O(n+ 1, 1), such that T
embeds onto a quasi-convex subgroup in [Y which is not totally geodesic. In
fact one can realize such an example by a map between compact manifolds
of constant negative curvature, say f: V — V', such that f is geodesic away
from a closed totally geodesic hypersurface Vo C V and f does have a corner
along V5. The presence of such a corner for dim V' > 2 makes it iinpossible to
homotop f to a geodesic map, since the limit set of I' = 7, (V) in S™ = 8, is
a non-smooth sphere §"~! C S™ with singularities coming fromn corners. (To
produce a cornered embedding start with some V' having totally geodesic
hypersurfaces V; and V; mceting across V, and glue V out of half of V| and
V2 as schematically shown on Fig. 17.)

Apparently, superrigidity may also fail for FI3" but not so drastically as for
H2. In fact, if in the Superrigidity theoremn we take X := HZ then the
conclusion remains valid in the weaker form where “geodesic” is replaced by
“pluriharmenic” (for the natural complex structure on H").
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Fig. 17

A comparison between Sp(n,1)-lattices and those of rank > 2. As far as the
superrigidity, arithmeticity and the T-property are concerned the lattices in
$p(n,1) and F;™ behave as in the case of rank > 2. But yet for rank > 2
the lattices are infinitely more rigid. For example, a theorem by Margulis
asserts that-every lattice " in a simple Lie group of R-rank > 2 is almost
simple. Thus it behaves as an overcooled liquid: add an extra relation to I’
and it crystallizes to a finite group. But the lattices in Sp(n,1) and Fj are
after all hyperbolic groups which are soft and amorphous creatures (by the
group theoretic standards) even though they may look rigid and unyielding
from the representation theoretic viewpoint.

On the increase of rigidity with ditnension. It seems that the lattices of every
classical series, such as I' in O(n,1) etc. grow with n in the hierarchy of
rigidity. The only definite result in this direction ! am aware of appears in
[Co-Haa] where the Sp(n, 1) groups are shown to satisfy stronger and stronger
versions of the T-property as n increases.

V. Quasi-convez discrete groups. Let T be a discrete isometry group of a
symmetric space X with K(X) < 0 such that Vol X/T = oo. There are
several notions which express the idea of convexity of I such as

(i) every T-orbit I'(z) C X is geodesically quasi-convez:
dist(tz + (1 ~ t)y(z), I'(z)) L ¢ < oo, for all y € T and £ € [0, 1] (where
¢ may depend on z € X);

(i) there exists a large-scale Lipschitz T-equivariant retraction X - I'(z);

(i1) the orbit map v — ¥(z) is a quasi-isometric embedding of I' to X.

I furthermore, T is word hyperbolic as an abstract gronp (which is of primary
interest to us in this section) then we may require that the limit set of I' in
the ideal geodesic boundary S"! = 8o X, n = dim X, equals the ideal
hyperbolic boundary 9,,I'. (Notice that $"! is a topological sphere and
moreover, it has a natural Lipschitz structure invariant under Iso X D> T,
but if rank X > 2 it may lack a T-invariant smooth structure, as is seen, for
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example, on §? = ,,(H? x R) which has no invariant C*-structure.) The
simplest examples of quasi-convex subgroups come from lattices acting on
totally geodesic subspaces in X and sometimes one can “glue” such subgroups
together by so-called combination theorems. Yet in all these examples (as far
as I can see) the dimension of I' (understood in the asymptotic or in the
hyperbolic sense) does not exceed the maximum m of dimensions of proper
totally geodesic subspaces in X.

Question. Is always dimT < m? If not what is the best bound on dimT in
terms of X7

Remarks and ezamples. (a) Non-convez groups. If we do not assume any kind
of convexity we may have dim[ = n — 1, where I fixes a horofunction on X.
Yet such examples can be probably suppressed by some very mild restrictions
on I' more general than any kind of convexity.

(b) Reflection groups. Consider a convex polyhedral cone in the space RP+?
P+
with the scalar product (z,y) = ZP: TYi— z’ z;y; and let T' C O(p, ¢) be the
£=] =p+1

group generated by the reflections around the codimension one faces with re-
spect to our scalar product. Under certain assumptions on the angles between
the faces this T is discrete. It may be semi-hyperbolic of arbitrarily large di-
mension. For example every Coxeter group I' comes this way (see [Vin],,
[Mous]). However, there are no examples of hyperbolic reflection groups of
large (e.g. > 30) dimension (sec [Vin}; and [Mous] on this matter) and one
does not know for most groups O(p, q) what is the maximal possible dimen-
sion d = d(p, q) a discrete reflection group T’ C O(p, q) may have.

(c) A bound on codim I’ by rank X . Suppose I' is hyperbolic and 8.," embeds
into Ggeo X (e.g. T has geodesically quasi-convex orbits in X). Recall that
Ogoo X is partitioned into simplices (chambers) corresponding to the Weyl
chambers (and their faces) in the maximal flats in X. Since the action of
I C Iso X is isometric with respect to the Tits metric, which is compatible
with the topology on each simplex of this partition, the limit set 3, I' C geaX
must be “transversal” to these simplices. For example, the fixed points in 9,
of non-torsion elements v € T are isolated points in 3. endowed with the
Tits metric. 1t follows that

codiml‘dz-e-fdimX—-dimI‘Zra.nkX—-l.

(d) Convez cocompact groups of isometries of hyperbolic symmetric spaces. If
X has rank one then all possible notions of (quasi-)convexity for I' coincide.
In fact, if I' has subexponential distortion in X (i.e. in Iso X) then there exists
a geodesically convex [-invariant subset Xo C X such that X, /T is compact,
which is expressed by saying I' is convez cocompact. (Thus “cocomnpact” is a
special case of “convex cocompact” and not the other way around.) There is



7. Hyperdolic Groups 185

a general feeling that if dim X is large and/or codimT is small, thea T is, in a
certain sense, piecewise geodesic. One may conjecture, for example, that Xp
contains a totally geodesic subspace Y C X, such that dimY — oo, provided
dim X — oo while codimT stays bounded. (Here codimI’ may be interpreted
as the topological codimension of the limit set 9, C 8,,X.)

The convex groups I' of low codimension (and their limit sets) gain additional
structure when we pass from X = HZ to H3" and then to H§" and HE.

(d') Complex hyperbolic groups I'. First we observe, following Corlette (see
[Cor]z) that 8T C O HE®, for n > 2, must have codimension at least two.
Indeed, assume T has no torsion (or pass to such subgroup of finite index
in T) and look at the complex manifold Vo = Xo/I'. This ¥, has strictly
convex, and hence strictly pseudoconvex (or C-convex) boundary and, there-
fore, it homotopy retracts, by a theorem of Grauert, to a union of a (unique)
maximal compact complex subvariety Wy C Int V5 and a (non-unique) poly-
hedral subset K C V, having dim K < n. Thus X, admits a ['-equivariant
retraction onto a subset of codimension > 2 which immediately implies asdim
[ < 2n - 2 and (with a little thought) dim 8,1’ < 2n ~ 3. In fact, whencver
dimT > n, there is a compact complex subvariety W, in (the interior of)
Vo = Xo/I" having dimg ¥y = dimT. In particular dimT is necessarily even
if it is > n + 1. (Also notice that, according to Grauert, one can blow down
W, to a single point, such that the resulting complex (!) space Vy is Stein.)
This agrees with our general philosophy that low codimensional T are similar
in most respects (such as rigidity) to lattices. Yet, in the simplest case where
Wo is a divisor in V;, we do not know when each irreducible component of
Wo (of codimension 2) is totally geodesic in Vp. (This may be expected for
n 2 3 and further reinforced by extra conditions such as (i) I is contained in
alattice I acting on X, (ii) W, is a smooth variety whose extrinsic curvature
in V; is bounded by a small constant ¢.)

Remarks on rigidity. (d}) Suppose W, is a totally geodesic submanifold in
Vo and assume there is no K-part in V5 (which can be insured by a purely
algebraic assumption on I, for example, by requiring that d,I" is a topological
sphere). Then we claim that the only possible deformations of 1" C Iso X
come from “rotations” of X around the totally geodesic submanifold X =
¥ C X. This amounts to saying that if we deform I' to a (also convex)
subgroup I C Iso X, then the corresponding Wy C V] remains geodesic.
To see this let first W, and W be complex curves (which is, in truth, not
allowed by our assumption dimI’ > n := dim¢ X). Then, by the elementary
Kahler geometry, the area of such a curve W is an integer multiple of a fixed
(normalization) constant and, hence, constant under deformations. The total
Gauss curvature of W is obtained by integrating over W certain expressions
of the form —dw — x(w)dw, where x(w) > 0 and s(w) > 0 at each point
w € W, where W is not totally geodesic. Hence x(w) = 0 in our case
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as the total Gauss curvature does not change under deformations. Now,
we come back to reality, where dimgc Wy > 2. Here we know that W is
biholomorphic to Wy as the (unique) harmonic map Wp — Vj realizing a
given isomorphism I' — 1Y is necessarily holomorphic by the Siu rigidity
theorem (see [Gr-Pa]). Then the above integration argument applies to the
tautological one-dimensional complex foliation of the space of totally geodesic
complex curves in W, (compare [Mok]).

(d3) The Mostow rigidity theorem for cocompact lattices in Iso X claims that
every two such mutually isomorphic lattices, say I' and I, can be joined
by biholomorphic maps between V = X/T and V' = X/I'. One can view
this from another angle by taking the diagonal action of ' ~ IY on X x
X for T acting on the first factor and IV on the second one, and then by
looking on the graph of our map V « V' lifted to VO = (X x X)/T. The
Mostow theorem becomes equivalent to the existence of compact complex
submanifolds in V© or, better to say (especially if I has torsion), a [-invariant
complex submanifold ¥ € X x X with Y/T compact. This leads to the
following

Problem. Let Z (for X x X) be a symmetric Hermitian space and T a discrete
group of isometries satisfying somne quasi-convexity condition. When does Z
contain a I'-invariant complex subspace Y C Z with a “small” (e.g. compact
or quasi-projective algebraic) quotient space Y/I'? When, on the contrary, is
Y/I' Stein? When is it a holomorphically convex space? etc.

Notice that the approach via the Grauert psendo-convexity theory only works
for dim I’ > dimg¢ Z and docs apply, for example, to the above Z = X x X of
the Mostow rigidity theoremn (which suggests an augmentation of Grauert by
Siu. Also one may try complex k-convexity.).

(d") Conver cocompact groups [' acting on HE" and H3. We use the usual
normalization of the nietric in our space X = HE®* or H® such that the ball
of radius R has the following voluine growth, Vol B(R) ~ exp § R where é is
the Hausdorff diimnension of 9, X with the (standard) Carnot-Caratheodory-
Mostow metric (for which the action of Iso X on 8,,X is conformal, see [Gro-
Paj), that is § = 4n + 2 for the quaternionic hyperbolic spaces If§* and
§=22( = (16 —1)+ (8 —1)) for HE. If T is a discrete group of isometries of
X with Vol X/T" < oo then the number of elements of every T-orbit in B, call
it Nr(R), grows roughly as B(R), i.e. as exp R, but if " is of infinite covolume
Nr(R) may grow slower. Then one defines §(1) as the infimum of those d for
which Nr(R)<expdR. I{ I is a convex cocompact group then this §(1°) equals
to the Hausdorff dimension of 8,,' C 8, X with respect to the CC M- metric
by a theorem of Sullivan (originally proved for }HZ and extended to other
hyperbolic spaces by Corlette). The following beautiful theorem of Corlette
shows that the size of " acting on H3" and H{S is bounded geometrically as
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well as topologically.

Theorem (see [Cor];). If T is a discrete group of infinite covolume then
5(I') < 4n (i.e. “codim” G > 2) for HEY and §(T) < 16 (i.e. “codim™ > 6)
for Héﬁ.

Corlette’s proof relies on the representation theory and especially on a quan-
titative version of the T-property for the groups Sp(n,1) and F;* due to
Kostant. (Notice, we have slightly cheated with the definition of §(T') but
this hardly matters.) Observe that a weak qualitative version of Corlette’s
theorem is valid (and obvious) for all symmetric spaces X where the group
Iso X is T (i.e. X has no factors isometric to R*, Hg or HE"). Namely, one
can bound T of infinite covoluine by giving a non-trivial lower bound on the
volumes of the concentric R-balls in the quotient space. We have already
mentioned that, by Kazhdan's observation, these balls B(X/I', R) cannot
have suhexponential growth, but it is equally clear that

Vol B(X/T, R)exp ~cR W 00

for some € = ¢(X) > 0. (The reader who wants to know more about this ¢
and §(T') should consult an expert on the representation theory.)

Bounds on dim[I’. If T is convex cocompact, we may try to estimate the
codimension of GoI' C 9 X in terms of §(X) — §(I') that is the Hausdorff
codimension for CCM-metric. It is immediate (as ohserved in [Cor];) that

codim @u ' 2 CCM codim dnl = %(5()() ~ 4(D)).

(The constant 1/2 appears because Jul" is modelled on a nilpotent group of
nilpotency degree 2.) On the other hand, if we have a smooth submanifold
M C 85X, of sufficiently large dimension, then codimM = CCM codim M
where “large dimension” is such that M is necessarily transversal at a generic
point to the subbundle Ty C 7(8xX), responsible for the CCM-metric.
For example, if X = H¥, then 8, X is modelled by the Heisenberg group,
codimTy = 1, and M cannot be everywhere tangent to S for dimM > n
which makes “large” in this case. This “large” can be also computed by
simple lincar algebra for H§* and H{8. (A fast evaluation 1 have nade in
my head says that dimM > 2n + 2 is “large” for HY* and dimM > 11 is
“large” for H{S.) Inspired by such “sinooth” considerations Pansu observed
that Corlette’s theorem combined with Pansn-Varopoulos isoperimetric in-
equality implies the connectedness of the complement 8o, H§* — 8,.T, as was
earlier conjectured by Corlette. (Pansu’s argument is reproduced in [Cor],.)
In general one has the following

Conjecture. Let Y be a smooth Carnot-Caratheodory space, consider all
sinooth m-dimensional submanifolds in Y and denote by &, = §,.(Y) the



188 Asymplotic Invariants of Infinite Groups

infimum of their CC-Hausdorff dimensions. (Notice that §,(Y) is a rela-
tively easy computable invariant of Y'.) Then every compact subset in Y of
topological dimension > m has CC-Hausdorff dimension > §,,.

Remarks. (i) One may need some extra regularity condition on Y, such as
real analyticity or a certain homogeneity (equisingularity) to avoid possible
pathologies.

(ii) The number 8,(Y) seems closely related to the isoperimetric (filling)
exponents for m-dimensional filling inequalities for Y (compare 5.A; - Aj)
and to the infS§im-invariants appearing in 7.C,.

(i) Let us indicate an approach to the conjecture which provides a non-
trivial lower bound on CC-Hausdorff dimension in terms of the topological
dimension k¥ of M C Y whenever Y contains sufficiently many submanifolds
of codimension k which are tangent to the implied subbundle 7y, C T(Y).
Namely, suppose we have a smooth map p: Y — R* whose levels are tangent
to Ty and such that the image p(M) C R* contains a non-empty open subset.
It is easy to see that CC-balls B, C Y have Voli(p(B.)) < **' and thus
dimy,, Y > k + 1. An example where this works is Y = 0HZ" and k > n.

(d"") Foliated way. The space of all isometric copies of HZ" inH§" is tauto-
logically foliated into these very 12" and a complex analysis on the resulting
foliation can be used for the study of /I§" (see [Gros;). If one could prove a
Grauert type theorem for holomorphic foliations with leaves having pseudo-
convex boundaries (which appears realistic and not too difficult), one would
show for compact coconvex I' acting on H&" and H{$ that all their topology
above middle dimension comes from totally geodesic subspaces. Namely, the
quotient manifold V = X/I' (here X = H§" or H¥ and T has no torsion)
should admit a homotopy retraction onto a union W U K, where W is a fi-
nite union of compact (immersed) totally geodesic submanifolds and K is a
compact subset with dim K < %dim X. This seems a plausible conjecture;
it also generalizes to other (non-Hermitian) syimetric spaces which contain
Ilermitian subspaces. Moreover, under especially favourable circumstances,
one should be able to reduce dimension of K further to dim K < % dimX —1.

Ezample: stability of geodesic submnanifolds (compare [Gro)ye). Let our V =
X/T contain a closed submanifold Wy C V which is ¢-geodesic (which means
the exterior curvature of Wy in V is < ¢) for a small ¢ > 0. The question
is whether W, can be perturbed to a totally geodesic submanifold. If X is
Hermitian symmetric, dim Wp > %dimX and W, has a small strictly con-
vex (or at least strictly pseudoconvex) neighbourhoood, then, by the Grauert
theorem, Wy can be approximated by a complex subvaricty W which, for
small enough ¢, can be seen to be non-singular and C?-approximating Wo.
Yet it is not clear when this W is totally geodesic. Furthermore, if X is
non-Hermitian but something like H§", then the geodesic approximation of



7. Hyperbolic Gronps 189

W is probably possible via the foliated way. (It may be worthwhile to reiter-
ate in this framework the abstract stability problem raised in [Gro);g: when
can an almost locally symmetric Riemannian metric on a closed manifold be
deformed to a locally symmetric one?)

V1. Underlattices and overlattices. An underlattice I is a group which admits
an epimorphism I' — T of a lattice T' C G for a simple Lie group G of R-
rank 1. (We could enlarge the class by allowing products of such I'"s.) The
least interesting of these T are those where the homomorphism I' — T factors
through a free group. This indecd may happen as there are (hyperbolic)
O(n,1)-lattices of a given dimension n which admit an epimorphism onto F
for a given k. On the other hand some underlattices are very close to lattices.
Here are standard examples.

(1) Collapsing cusps. Let V be a locally symmetric space of negative curvature
with cusps whose fundamental group is our I'. Recall, that V decomposes

Vv=WUuC,u...uG,,

where V; is a compact manifold with (concave) boundary and C;, i =1,...,k
are the cusps. Each cusp lifts to a horoball in the universal covering X of V
and C; is unique up to a choice of a horosphere in a given family of concentric
horospheres. Topologically C; = 8C: x R, where the boundary 8C; is an
infra-nilmanifold whose fundamental group [; injects into [' = x; (V) and the

k
boundary 9V, is the disjoint union @V = |J 8C;. Now we attach topological

=1
cones to all components of the boundary of V;. The resulting singular space,
say Vo, has ;(Vo) =T = ([ |T: =1).

Claim. Suppose the metric in V is normalized such that K(V) < —1. Then
if every cusp C; is sufficiently thick, that is if the injectivity radius of V at
cach point v € 3C; C V satisfies Inj Rad, > p, for a sufficiently large p, then
Vo admits a singular metric with K < 0. In particular, T is a hyperbolic
group of dimension n =dimV.

This is explained somewhere in {Gro]14. Notice thal a sufficient bound for p
isp>2.

Next, even if tbe cusps are not thick, we can perform a similar procedure
by first looking at regular finite coverings of 3C; corresponding to normal
subgroups T; C I'; of finite indices. If these coverings have the injectivity
radii at 8C; at least p, then the space V, admits a structure of an orbispace
with K < 0 where the orbistructure is localised at the vertices of the cones,
eV, i=1,...,k, with the ramification groups I‘,—/f.-. The corresponding
group we obtain is T' = (T | I'; = 1) whick is hyperbolic (with torsion) of
dimension n.
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A similar operation may be performed with compact totally geodesic sub-
manifolds in V and, more generally, with locally convex subsets Wy C V.
Namely, if the normal injectivity radius of Wy is > p, i.e. if the p-neighborhood
W, O Wy homotopy retracts on Wy, then the space V obtained by removing
W, and coning the boundary of V, = V — W, (which equals the boundary of
W,), admits a metric with K’ < 0 and the fundamental group of this space is
hyperbolic of dimension n = dim V, provided p > 1 (and where V assumed
compact, i.e. withont cusps). Furthermore, if p is small, then K < 0 may be
achieved with an orbifold structure at the vertex of the cone corresponding to
a (sufficiently large) finite covering of the boundary dV,. (If W, is a totally
geodesic submanifold of codimension two, then x) (0W,) # my (W,) = m (W)
and one does not have to “uncover” the extra loop in 8V, = W, to have
K <0)

If one is content with T being hyperbolic without insisting on K < 0, one can
cone certain totally geodesic submanifolds W C V which may have very small
normal injectivity radius and yet have the group I' = (I' | Ty = 1) hyperbolic,
where 'y C T denotes the union of the imnmages of the fundamental groups of
the connected components of W in I = x,(V). (Our coning applies separately
to each connected component of W, if we do not want extra “free” generators

inT.)

Let us formulate a “small cancellation” condition which insures the hyperbol-
icity of I'. We assume as earlier K < —1 and we fix a certain small constant
€, say € = 1, and say W ¢-approaches itself along an R-ball B if there ex-
ist two different (totally geodesic) submanifolds Y and Y’ in X which cover
certain components of W in V (it may be the same component, though we
assume Y # Y’) and an R-ball B C Y which projects to B in W and such
that dist(6,Y2) < ¢ for all € B. (We do not assume dimY =dimY".)

Small cancellation condition. If W e-approaches itself along an R-ball BC W
then the injectivity radius of W (with the Riemannian metric induced from
V) at the center of B is at least kR for some constant k > 1.

Claim. For everye > 0 there is k = k(¢) (e.g. fore = 1 one may take k =7)
such that if W satisfies the k(€)-condition for a fized € > 0, then the group T
is word hyperbolic and has dimension n = dimV.

In fact, by looking at minimal filling disks in V one sees that T satisfies the
linear isoperimetric inequality and that there is no non-trivial normal relation
in'w CT.

Remarks (a). The above claim, properly modified, applies to all hyperbolic
groups I, though one should be careful about torsion, (especially 2-torsion),
which was overlooked in [Gro),4 and put straight in [Delz], ;.
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(b) The small cancellation condition we imposed on W seems unduly restric-
tive especially if dim W > 2.

Our constructions of interesting factor-groups T of lattices T' depend on the
presence of special convex subgroups in I associated to totally geodesic sub-
manifolds (and/or cusps).

Questions. What are other possible factor groups of lattices I'? For example,
do Sp(n,1) and F;®-lattices T admit infinite (hyperbolic) factor groups T
with dimT < dimT, say with dimT' = 2? Are there (hyperbolic) factor
groups T of cocompact U(n, 1)-lattices with dimT' = dimT — k, where. k is
an odd positive integer?

Here one should be aware of the following slightly troublesome factor groups
of . Take a generic system of elements ¥;,...,v in I’ and add arbitrary
relations wy, ..., we in . The resulting group T = (T' | w; = 1) sits between
Fand T = ([ | 5 = 1). A variation of this construction may be applied to
free products I'«I" (see [Groj,4) which gives us T, which is a factor group of I
as well as of I’ and has dimT. = max (dimT,dimI",2). But in some intuitive
sense such T" is reducible (see below) and contains a piece corresponding to
Y which may have dimension > dimT (if dimI¥ > dimT'). Then one feels
uncomfortable regarding I~ as an undergroup of [’ but one may try to isolate
the part of (the ideal boundary of) T belonging to I' whose dimension does
not exceed that of (the ideal boundary of) T' unless I is virtually free,

On reducibility. In order to define reducibility one needs a topological charac-
terization of the spaces appearing as ideal boundaries of groups which would
include the idea that such a space has “no boundary”. Then a space A
“without boundary” is called reducible if it contains a proper closed subset
Aq of full dimension which also has “no boundary”. A particularly strong
reducibility appears if A contains a (closed) subset A’ of codimension > 2
such that removing A’ from A changes the connectivity of A, e.g. makes a
connected space disconnected. This strong reducibility can be defined also
for non-hyperbolic groups [ by using the large-scale topology of 1" instead of
0T

It would be interesting to find an algebraic criterion for reducibility.

Test Questions. Let T be a hyperbolic gronp with dimd,I" > 2 and suppose
there are two points 8),8; € 35T, such that the complement 3,T" — {6, 82} is
disconnected. Does there exist a non-torsion element 4 € ' whose two fixed
points in O also disconnect 3,,I'7 If so, when docs T' decompose into an
amalgamated product along a virtually cyclic subgroup containing ¥? What
bappens if 8.,I" of dimension > 3 can be made disconnected by a topological
circle in 8,7
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T-property for underlattices. Since the Sp(n,1)- and F; ®-lattices are T so
are their factor groups. This was pointed out to me by D. Kazhdan who
observed that this property, together with “generic hyperbolic factorization”,
yields uncountably many isomorphism classes of finitely generated T-groups,
contrary to what was earlier conjectured by A. Connes.

Overlattices. These are the groups [’ coming along with epimorphisms into
lattices, I — T, similar to ramified coverings (see 6.E,). In fact we do have
ramified coverings for O(n, 1) and U(n, 1)-lattices as these may have convex
subgroups of codimension two, e.g. associated with totally geodesic submani-
folds of codimension two. On the other hand, in view of our earlier discussion
on convex groups in Sp(n,1) and F;*, no such subgroup is expected in
Sp(n,1) and F;%-jattices and so thcy should not have any overgroup [ even
remotely resembling ramified coverings. Here is a specific

Conjecture. Let T be a cocompact lattice in Sp(n,1), n > 2, and Fa hy-
perbolic group whose boundary is homeomorphic to $*~! = 8,.I" and let
' = T be a surjective homomorphism which induces an isomorphism on the
top dimensional cohomology, i.e. H**(T;R) = H*"(T;R). Then the kernel of
the homomorphism I' — T must be at least 2-dimensional, i.e. some finitely
generated subgroup in this kernel must be not virtually free.

Remark. The hyperbolization procedure (see [Gro)y4) gives us I' — T" where,
however, dim(kernel) = dimT — 1.

We have more or less exhausted our resources of hyperbolic groups with many
questions remaining open. For example, for a given n we want to have (or
show it does not exist) a word hyperbolic group T of dimension n having (at
least some of) the following properties.

(1) Bsl is homeomorphic to S"~! and/or I' appears as the fundamental
group of a closed n-dimensional aspherical manifold (or pseudomanifold)
V. (It would be too much to ask for a metric with K <0 on V.)

(2) T has no (quasi-convex) subgroup I of infinite index with codim1” < &
for a given k > n — 2. (The strongest requirement would be asking that
every infinite subgroup of infinite index in I' is free.)

(3) T satisfies Kazhdan’s 7'-property. (Notice that all known irreducible
hyperbolic T-groups are even dimensional.)

(4) T" has no proper subgroup of finite index. (Or, on the contrary, T is
residually finite.)

(5) T receives no quasi-isometric embedding of the hyperbolic space H* for
agiven k > 2.

(6) I' admits no quasi-isometric embedding into a given syminetric space X,
e.g. into HY for a given (finite or infinite) N.
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We can continue this list by imposing more and more conditions on I' but
this only adds to our frustration as we cannot prove anything.

7.B. Hyperbolic or K < 07 The basic foundational question is as follows:

Does every word hyperbolic group admit a discrete cocompact action on some
metric geodesic space X with K(X) < 0?

[t seems we do not loose (or gain) much by allowing non locally compact
infinite dimensional spaces X where “cocompact” should be replaced by
“cobounded” and K < 0 must be forced to strictness by requiring K <& < 0.

A more general question concerns discrete non-cocompact actions of groups
T on hyperbolic spaces X where one wishes to replace such an X by a qtiasi-
isometric space Y of negative curvature with a discrete isometric action of
the same group I' (and where the implied quasi-isometry X «+ Y is better to
be I'-equivariant).

It took me about ten years finally to accept the failure in resolving these ques-
tions and admit “hyperbolicity” as a permanent definition replacing “coarse
hyperbolicity” whose life span 1 thought would be measured by the time
needed to prove “hyperbolicity” = “K < 0”. (Compare [Gro]s.)

The first case where the (K < 0)-question remains open concerns small can-
cellation groups I'. One still hopes to prove that such a I' admits a discrete
cocompact isotnetric action on a 2-polyhedron X with K < 0, where K < 0
could be strengthened to K < 0 for I hyperbolic. Yet one is unable to prove
even the weak version where one would admit an infinite dimensional space

X with K(X) <0.

The second foundational question is more geometric. Can every I'-space X
with K < 0 be equivariantly smoothed?

llere “smoothing” means including X into a smooth Riemannian manifold
X, of negative curvature with convex boundary where we prefer dim X, < oo
but would be content with an infinite dimensional X if there is nothing better
in the offer.

Next we want to include X as a convex subset into a geodesically com-
plete I'-manifold X, D X, whase curvature is pinched between two negative
constants. Then the ideal boundary 8, X (and 8o.I" for X/T' compact) I-
equivariantly embeds into S~ = 8, X, n = dim X,. This gives us a certain
smoothness of 8, X with the I'-action as the action of T" on 3, X, (besides be-
ing hyperbolic) is Holder for some smooth structure on the sphere S*~!, where
the Holder exponent depends only on the pinching. (If —¢; < K < —¢; <0,
then every v : 8o Xy — 80Xy is C® for a > ¢3/c); moreover, if ¢; < 4¢3,
then one can take “C'-smooth” for C®; here one should be aware that the
composition of two C®-maps is, in general, no better than C"")
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Remark. One can show that every word hyperbolic group I' acts on some
sphere S™~!. This is the easiest if I has no torsion and thus representable
as 7, (P) for some finite (Rips’) polyhedron P. This P can be thickened to a
compact manifold with boundary ¥, O P and then V; can be “completed” by
attaching the cylinder to the boundary By = 3V;, where the cylinder By xR,
for B, = By x 0 is endowed with the Riemannian metric e‘go + dt®. The
universal covering X, of V, = V U By x R, is obviously hyperbolic and one
can show that 8, X is homeomorphic to §*~!, provided the dimension of ¥,
is sufficiently large (e.g. dim V5 > 2dim P + 3). However, the proof (] have in
mind using Cannon’s double suspension theorem) does not (?) automatically
provide a Holder control on the implied homeomorphism between 8,, X, and
the standard sphere, where “Holder” here refers to the metric gz on 9, X,
obtained as follows. Let g denote some I'-equivariant Riemannian metric
on X, which is e'go + dt? outside X, = ¥ C X and take the conformal
metric g5 = g for p(z) = exp(—Fdist(z,zo)) for a fixed point zo € X,
and some sufficiently small # > 0. Then the metric completion of (X, g5) is
homeomorphic, according to Floyd to X, U8, X, (see {Gr-Pa] and Appendix
to §8) and so g, induces a metric on 9,,X; also denoted gg. (If the metric
g on X is negatively pinched, then (9,,X4,gg) i3 Holder equivalent, by the
obvious map between 9,X and the unit tangent sphere S*~! at zy € X,
where the implied Holder constant depends on the pinching and 3.)

The above discussion suggests the following

Question. Take some class C of transformations of the sphere S™1 dis-
tinguished by local regularity properties, e.g. the class of C*-lolder maps.
For which word hyperbolic groups I' can one find a smooth structure on
00X D 0T (we assume dim X = n), such that all 4 : 9,,X, — 0 X, will
belong to C? (The definition of C' should make sense with respect to any
smooth structure.)

Some answers will be given in the next section.

7.C. Around the pinching problem. The pinching constant of I' may
be defined as the minimal (or infimal) € > 0 such that T admits a discrete
isometric action on some geodesically complete Riemannian manifold X of
a given (or, on the contrary, unspecified) dimension with negative curvature
pinched by —(1+¢)* < K(X) < —1. (Nothing would change if we said
—(1+¢)*s < K(X) < ~« for some x > 0 as we could always rescale the
metric in X.) Here one badly needs at least one such X in order to raise the
discussion from the ground. Then, to keep it in the air, one should have some
means of showing for certain I’ that € cannot be made arbitrarily small.

In what follows we shall define several asymptotic invariants of general hyper-
bolic groups (and spaces) reflecting the following property of pinched mani-
folds X. We assume here that X is simply connected with K < 0 and we do
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not mind convex boundary. We consider concentric spheres S(R) in X around
a fixed point in X and denote by p, : S(R+r) — S(R) the normal projection
for some fixed R. These spheres are smooth hypersurfaces (possibly, with
boundaries) and the maps p, are smooth. If K(X) < —1 then p, exponen-
tially (in r) contract the lengths of smooth curves C ¢ S(R + r), where
the contraction is measured by the number A,(C) = length p, (C)/ length C.
Now, if the curvature is pinched between —1 and —1 — ¢, then a standard
estimate reads,

A(C) < (L(C)'™* (*)

for every pair of smooth curves C and C' in S(R + r). For example, if the
curvature is constant (i.e. ¢ = 0) then A (C) = A,(C") for all curves C and
(B
The inequality (x) yields similar relations for the volume contraction for sub-
nianifolds M C S(R+r) of dimension k =1, 2,...,n—1=dimS(R +r),
that is

A¥(M) = A¥(M) =, Volu pr(M)/ Vol M,

(so that A! equals A, of the previous definition for curves). For example
the top-dimension contraction A™"! of every open subset M C S(R +r) is
bounded by

A (M) < (AY(©))” (+)

where C' is an arbitrary curve in S(R +r) and a = (n— 1)(1 + ¢€); also there
is the lower bound

A ) 2 (A4(0))” (=)

for 8 = (n — 1)/(1 + €). Furthermore, one has stronger inequalities if one
considers all smooth curves C in M and takes the supremum and infimum of
AY(C) over these curves. Then one has

oy

A (M) <sup (AN(C))", (++)
ccM
fora’ =14 (n—2)(1 +¢)and
A=) 2 ol (A(€))" (~*)

for B/ =1 + (n — 2)/(1 + ¢). Finally we state the following generalized and
refined version of (+#). We take a smooth submanifold M C S(R + r) of
diniension k +£ and let A" be a family of smooth k-dimensional submanifolds
N C M satisfying the following condition: each ncighborhood in M contains
some N € N. Then
AM*(M) <sup (A*(N))° (++)
NeN
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for a =1+ tk~'(1 +¢).

It is also worth recalling at this stage that pinching controls (via (++)) filling
inequalities in horospheres § C X. For example, every k-dimensional cycle
M has

Fill Volgyy M S (Vol M) v

for y=(1+¢e)(k+ 1)k

and

FillRad M < (Vol M)

for p = (1 + €)/k (compare §5), where the filling volume and radius are
measured in S (and not in X > §).

Before starting our definitions for general hyperbolic spaces let us look at an
example where inequality (++) becomes sharp.

Computation in HZ*. The metric here is 4-pinched, i.e. it is pinched with
€ = 1. The spheres S(R) C HE" carry codimension one tangent subbundles
T\ C T(S(R)) which are invariant under normal projections. If two curves C
and C’ in S(R + r) are simultancously tangent or simultaneously transversal
to this subbundle then A (C) ~ A, (C") for large r. But if C is tangent to
T, and C’ is transversal to it then A, (C’) ~ (A (C))? for r — oo. The
inequality (++) may be sharp onlyif £ =1 and k < n — 1. For this we need
M C S(R + r) transversal to T} and such that 7y N T(M) is an integrable
subbundle in T(M). Then we take the set of integral varieties (local leaves)

2
of TyNT(M) for N and observe that A*¥+' (M) ~ (A*(N))+, forall N e A
which amounts to equality in (++) with € = 1. (Notice that the integrability
of Ty N T(M) insutes the condition on A required for the validity of (++).)

On the other hand if we look at submanifolds V in S(R + r) of dimension
k > n and M of dimension k + ¢, then we observe that

k4441
Ak+l(M) ~ (Ak(N)) _}TI_
which is in agreement with a in (-4 +) even for € = 0.

7.C,. Quasi-isometric description of a. We attenipt now to define a
constant similar to the exponent a in (++) which we want to be a quasi-
isometry invariant of X. Eventually, we should be able to evaluate such a
constant for concrete spaces X (e.g. for I{*) in order to show that X is
not quasi-isometric to a space with (1 + €)’-pinched curvature for certain ¢
depending on our (quasi-isometrically defined) constant.

We assumme here that X is a geodesic hyperbolic space and with each subsct
A C 83X we associate the geodesic cone CA C 8, X from a fixed point
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2o € X and a separated net in C A denoted C°A C CA. Then we can speak
of the growth of C'A by looking at the number card (C°A N B(R)) for the
concentric R-balls in X around zy as R — co. This number is, in fact, finite
if A is compact (or if 3., X is compact which is the case for most of our
applications) and gro(A; R) = card(C®A N B(R)) grows exponentially with
R. The rate of this growth is rather unsensitive to the choice of the net C°A,
as the cardinality changes by a multiplicative constant in most cases as we
change C°A inside CA. Also the shape of CA does not change much if we
replace it by the geodesic cone over A with respect to another metric ¢’ in X
which is quasi-isometric to the original one, However, the balls B'(R) C X
with respect to ¢’ may be quite different from B(R) which makes all the
difference for card(C®AN B(R)). V¥or example, by just rescaling the metric we
may go to B'(R) = B(aR) and, accordingly, the growth function gro(A; R)
may switch from exp AR to expaAR. llowever, if we compare two growth
functions gro(A; R) and gro(B; R), the relative ezponent of the growth, say
K R) = b(A:B; R) defined by the equation

gro(A; 1) = (gro( B; R))"™®

is essentially invariant under rescaling of the metric in X and we want to
extract from b(R) a number which will be a quasi-isometric invariant of X.
The idea of removing the dependence of b(R) = b,(R) on a particular metric
g consists in taking an appropriate supremum (or infimum) over all metrics
quasi-isometric to a given one. 'This idea was brought to this context by Pansu
(see [Pan]s) from the conforinal geometry, where it is commonly used. In fact
the invariants we are going to coustruct are similar (and sometimes identi-
cal) to Pansu’s conformal dimension, though our presentation follows a more
geometric route suggested by pinching of hyperbolic cusps (see {Groly2,).

Definition of inféim(.4:8). Here A dcnotes a family of subsets A C 80X
and B is another such family. Our inféim is supposed to measure something
like the infimum of the relative dimensions infdim A/ dim B over A € A
and B € B (compare [Bour]). The most important case is where B consists

of a single set, e.g. O, X itself and then we just write infdim A (instead of
inf §iin A {000 X }).

We shall measure the growth of subsets, say A C 3, X, by taking cones CA
and nets C°A with respect to a fixed metric. These will be uniformly dense
and separated throughout the discnssion (say, we always take 1-separated 2-
nets). Then we say that a metric dist’ on X in our quasi-isoinetry class is
B-finite if the corresponding distance function d'(z) = dist'(z, o) satisfies

E exp—d'(z) < const < c0, BE€B,
c°B
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for some const = const(B). (This means, roughly speaking, that
gro(B; R) < expdR

for all B € B.) Then we define inf§im(A:B) as the infimum of § > 0 with
the following property: for every B-finite metric on X there exists a subset
A € A such that

> exp—éd'(z) < oo.
coa

It is obvious, our infdim is a quasi-isometry invariant.

If B consists of a single compact subset B in 8,.X of dimension m (in exam-
ples, B = 0,,X) and A, consists of all k-dimensional subsets in B, then one
may expect that

inféim(Ax'B) < k/m,

this appears easy for ¥ = 1. In fact, inféim A, for B = {8, X} is, probably,
related in most cases to Pansu’s conformal dimension hy

inf8im A, = (conf dimac,‘,)()—l ,

(compare 8.C,).

Besides serving as a quasi-isometry invariant, our inféim may provide an
obstruction for the existence of a quasi-isometric embedding X — Y, where
the space Y does not have to be necessarily hyperbolic. For example, let Y
be a simply connected space with K(Y) <0 and A and B two subsets in the
geodesic boundary g.Y. We take as earlier nets in the geodesic cones over
A and B, called C°A and C°B in Y and define dimy(A:B), roughly, as the
“ratio” of the exponents of their growth. More precisely, we consider pairs of
number a, 8, such that the sums

Y exp—ad(z) and ) exp—Bd(z)
Co4 c°B

converge, where d(z) = disty (zo, ), and then take the infimum of the ratios
a/f for §imy(A:B). Notice, this is not a quasi-isometric invariant of Y. The
most important case bere is wbere B = 0,.,X and then we write 8imy A for
dimy(A:B). Similarly one defines §imy (A:B) for families of subsets in GgaY .

Now, let X — Y be a quasi-isometric embedding which extends to a topo-
logical embedding 8,X — 8Y where X is assumed hyperbolic. (This
extension condition is certainly quite restrictive. Yet it is satisfied if the im-
age of the embedding is quasi-convex Y which means that the geodesic cone
in Y from a fixed point y € Y over X C Y is contained in a p-neighborhood
of X for some p < 00.) Then

inf§im A, > dimy AY
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where A, denotes the set of all compact k-dimensional subsets in 8,,X and
AY is such a family in 8.Y.

Remarks (a) In order to nse this estimate one needs, besides an upper bound
on inf 8§im A, (these appear in the examples following this discussion), a non-
trivial lower bound on éimy A}. Such a lower bound is, in fact, possible
whenever k > Rank X for a suitable definition of Rank (compare 6.B) and it
is especially easy for somewhat larger k. For example, let Y be a Riemannian
manifold with K < 0 such that for every (k + 1)-dimensional linear subspace
T c T(Y) every (k+ 1)-dimensional submanifold Y, C Y having T, (Vo) =T
and geodesic at yo (where yo is the base-point of T') satisfies

Rici T = Ricciy, (Yo) € —6°

for a fixed § > 0, while the Ricci curvature of X is bounded everywhere from
below by —A? Then, clearly, imy AY > §/A.

{b) It is desirable to render the above discussion quasi-isometry invariant. For
this we have to exhibit a quasi-isometry invariant class of subsets Z (replacing
the geodesic cones) such that every Z in this class admits a lower bound on
the growth, i.e. the intersections of Z with concentric R-balls in Y should
satisfy

card.(Z N B(R)) 2 expaR

for all € > 0 and an a > 0 independent on Z in a given class (but depending
on the class), where card, denotes the minimal number of ¢-balls nceded to
cover the set in question. Here arc two candidates for such classes of subsets.

(1) Families of mazimal quasi-flats. Take Zo = R* x A for some compact

connected inetric space A and let the sets Z in our class be the images of the

continuous maps ¢ : Zp — Y, such that

(1) @ is A-quasi-isometric on each R* x a, a € A. (ln other words p(R* x a)
is a quasi-flat in Y where “quasi” is uniform in a.)

(ii) The Hausdorff distance between the images p(R* x a,) and @(R* x a;)
is infinite whenever ¢, # a;. (One may require more by giving some
bound on the rate of divergence between the quasi-flats ¢(R* x @) and
e(R* x a3).)

Question. Suppose Y is a “nice” semihyperbolic space of rank & (e.g. Y is a

symietric space or a product of ¥ hyperbolic spaces). Is then

card.(Z N B(R)) 2 expaR

for some a independent of 7?7

(2) Quasi-minimal subvarieties. Let Z C Y be a (k + 1)-dimensional subva-
riety (cycle) which infinitely spreads (compare [Gro]s;) in the sense that

FillRad d(Z N B(R)) —_oc.
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(One could alternatively require that Z has asymptotic dimension k + 1.
Another possibility would be to insist on a lower bound on Fill Rad, say

lim inf R~ Fill Rad(Z N B(R)) > 0.)

Next, we say that Z is strongly quasi-minimal if there exists a large-scale ).
Lipschitz retraction Y — Z. Notice that “minimal” does not imply “strongly
quasi-minimal”.

Question. Let again Y be a “nice” semi-hyperbolic of rank < k. Is then
card,(Z N B(R)) 2 expaR?

Remarks. (a) The condition rank < k implies for “nice” Y the linear isoperi-
metric inequality for filling in of k-dimensional cycles. This immediately gives
a universal bound on the growth of honestly minimalinfinite cycles Z, but for
quasi-minimal cycles the growth-rate o may, a priori, depend on the implied
quasi-minimality (Lipschitz) constant \. What we want to prove is, in fact,
that o does not depend on A.

(b) There are other families of subsets Z C Y where the above discussion
applies. For example, one may use (1) and (2) simultaneously and look at
quasi-minimal cycles Z which decomposes into unions of maximal quasi-flats,

Now let us evaluate inf §im for specific hyperbolic spaces X.

Ezamples. (a) Real hyperbolic space HZ. llere the boundary 8. HR equals
the standard sphere $"~1. Take A, a family of k-dimensional subsets in S™~!
containing the smooth k-dimensional submanifolds (e.g. the family of all &-
dimensional subsets). It is obvious that inféim A, > k/n — 1. Then, in order
to prove that, in fact, inf §im Ax = k/n — 1, we observe that the summation
over nets can be replaced by the integration over cones with respect to the
hyperbolic metric. Thus, we start with a distance function d’(z), such that

/(exp —d'(z))dz < oo (%)
g

and we have to show that there exists a smooth k-dimensional submanifold
A C S, such that
/(exp —éd'(z))dz < 0o (++)
ca
for every § > k/n—1. To do that we take some probability measure dy on A
supported on the set of smooth k-dimensional submanifolds A C ™!, such
that the push-forward of dady to S™! has continuous density with respect
to the spherical measure. (For example, we may take some neighborhood
U c 85! which smoothly splits by A x M and take a smooth measure on
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M for dp.) Then we express (+) and (#+) in polar coordinates in HZ minus
a fixed (large) ball,

/ (exp —d'(2)) dz < / (exp —d'(s, £))(exp(n — 1)t) ds dt.
iy

Sn—1x(1,00)

We replace ds by (the push-forward of) da di and see that

exp((n — 1)t — d')dadudt < oo,

Sn—1x{1,00)
and by Halder inequality, for every 6 > "—f;, we have
exp(kt — §d')dadp dt < co.
S$n=1x(1,00)

Then we observe that the measure exp(kt) da dt is equivalent to the Riemann-
ian measure dz on the cone C'A and so we see that

/dy/cxp(—é'd')d: < oo.

A CA
Thus for some A C A, the interior integral is < oo as well, Q.E.D.

Question. Let T' be a word hyperbolic group whose boundary is horneo-
morphic to $"~! and such that the family A; of the compact k-dimensional
subsets has inféim A, = k/n for a given k = 1,...,n — 2 (or for every
k=1,...,n—2). Is then T commensurable to a lattice in O(n,1)7 (We
know, this commensurability is equivalent to the existence of a quasi-isometry

[«s H™))

Remark. The answer is “no” in complete generality without assuming 3,,I"
is homeomorphic to $*!. For example, if we glue together k copies of the 2-
torus minns a disk over the boundary circle, the fundamental group T, of the
resulting space (T'y = F2xz...%zF;) has (by an easy argument) inf6im A4; = 1
for all k£ > 2. Yet it is not a surface group unless &k = 2.

(b) Complez hyperbolic space HE*. Here the boundary is $**~! with a codi-
mension one subbundle T; C T (§?*!). The hyperbolic measure of #2" in
polar coordinates is (equivalent to) exp(2nt)dsdt. In fact for every sinooth
k-dimensional submanifold A C $3"~!, transversal to T, the measure on the
cone CA is (equivalent to) (exp(k + 1)t)dadt (instead of exp(kt)dadt for
H3R), but if A is everywhere tangent to 1) then this measure is exp(kt) da dt.
Notice that such tangent suhmanifolds A exist for ¥ < n — 1 and more-
over, there (obviously) exists a measure du on the family of all such A with
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dim A = k < n -1 whose push-forward to $*~! has continuous density with
respect to the spherical measure. Then the computation for Hg extends to
HE and shows that

infédim Ay = k/2n
for the family A of all k-dimensional subsets in $°"~! where k < n—1. Notice
that this dimension is k/2n — 1 for H3" which shows, in particular, that H2»
is not quasi-isometric to HZ". (This is an old result by Mostow.)
Case k > n. If A consists of a single compact subset A whose Hausdorff
dimension for the Carnot-Caratheodory metricis > k41, then inf éim{A} >
(5tL) — ¢ for every € > 0. (We know that the k-dimensional compact subsets
for k¥ > n have CCH dim > k + 1, compare d” in V of 7.A.)

n-1
(c) Let X = [0,1]"" x [I,00] with the metric ¥, (expA;t)’ds? + dt? for

1=1
some 0 < A} € A3 € ... € A,-1. Here we claim that the family A of the
k-dimensional subsets in 8, X = [0, 1] has

k n-1
inféim A = E/\.- E A

i~l i=1

The upper bound on inf§im A is obtained with the splitting 3,,.X = A x M
corresponding to the coordinates s;,...,3% and Sg4,...,8,-) and with the
measure dg = dsyyy ...ds,_) on M. The lower bound is achieved by a simple
inductive argument mimicking the standard proof of the classical inequality

Hausdim > top dim.

— n-1
Corollary. The numbers A; = A; / Y. Aj can be recovered from the quasi-
1=1
tsometry type of X. ’
This was earlier proved by Pansu (see [I’an)s74) by using l-dimensional L,

cohomology of X. In fact Pansu looks at the solvable group R*! < R with
the metric $-(exp Ait)*ds? + dt?, where our computation can also be applicd.

(d) Pinched manifolds. Let X be a Riemannian manifold with — (1 4 ¢)? <
K(X) < —~1. Then it is easy to see that the family A; of the compact
k-dimensional subsets in J,, X has

inf6im Ax > k(1 + £)(n — 1)) (+)

(essentially, because the topological dimension of A is bounded by the Haus-
dorff dimension).

(d’) Remark. The inequality (+) is, strictly speaking, sharp. One may have a
metric which has K = —1 in one open geodesic cone in X and K = — (1 +¢)*
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in another such cone. Yet, there is something ridiculous about the inequality
(+) as it does not become an equality for k = n — 1 = dim8,,X. However
] do not know how to modify (+) (by adjusting definitions or by imposing
some restrictions on X) in order to have k((1 4+ &)(n — 1 — k) + k)™ on the
right hand side.

7.C,. Further pinching invariants. Let us indicate other possible charac-
teristics measuring the asymmetry of the (exponential) growth of hyperbolic
spaces X. First, we observe that our examples do not reveal anything about
inf 5im(A:B) for general B. For example, if X = HZ* and A = A, while B
constitutes a sufficiently large family of £-dimensional subsets, we expect that
inféim(A:B) < k/{+1 for k < n and £ > n (where a “sufficiently large” B may
be, for example, the set of the levels of a continuous map §"~! — R™?-1-4),
This, for k = n—1 and £ = n, together with the (d')-version of the above (+)
with £ = n in place of n — 1, would show that H3" cannot be (1 + €)*-pinched
fore <1.

Our infédim measures, in essence, the discrepancy in the rate of growth of
geodesic cones C C X of different dimensions. One may try to use other
invariants of the cones  besides the growth. For example, one may intersect
C with the concentric spheres in S(R) C X (or, better, with the bands
S(fy, R;) between S(R;) and S(R;) for R; = (1 + €)R,) and look at the
growth of Diam(C N S(R)) for R — oo, or at similar higher dimensional
invariants measuring some spread of SN S(R). (An instance of such a spread
is the k-width of C' N S(R), see [Gro)ss.)

The difference of growth of X in different dimensions can be also measured
with the filling radii for k-dimensional cycles Z, C X. One knows that
FillRad Z, < pxlog Vol Z; and the exp of the ratios logpi / log pe for the
“best” constants, pr and pe, have the same flavour as §im (A;iA).

Another possibility is suggested by looking at the isoperimetric exponents in
the horospheres H C X. In such H the filling volume is (usually) polynomial,
Fill Voli4y £ (Vol, )™ where the (non) pinching is responsible for the deviation
of o from (k-+1)/k. (Notice, that the asymptotic geometry of the horospheres
H for k < 0 and, in general, for £ < 0 is poorly understood. It seems that
a horosphere H always grows at least as fast as the flat Euclidean space R
for n = dim X and that the Euclidean growth of the horospheres (e.g. in the
sense of the volumes of balls in If for the induced Riemannian metric) is only
possible for manifolds X of constant curvature, provided dim X > 3.)

The isoperimetric exponents a; in horospheres and in families of concentric
spheres S(R) C X bring along the idea of functional isoperimetric invariants
in S(R) and X, such as various Poincaré-Sobolev ezponents in the inequalities
comparing L, and L, norms of functions (and form) and their differentials.
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Ultimately, we torn to the de Rham complex 1% — Q! — ... of forms on X
and study its chain homotopy invariants with respect to L,-topologies for var-
ious p in different degrees (see §8). The advantage of such an approach is the
automatic quasi-isometric invariance, so that there is no need to take infima
(or suprema) over the metrics on X in a given quasi-isometry class (albeit
these infima and suprema are implicit in the L,-cohomology formalism).

Inf §im for pertitions. Let Ay, b € B be a family of closed subsets in 8,,X.
Then one may compare the exponential growth-rate of the cones CA, C X
with the divergence between the cones C Ay and C Ay for b #£ VY, where the
distance between CA, and CAy may be measured in the Hausdorff sense
within the R-ball B(R) or (if A, and Ay do not intersect) as the infimum of
the distances between the points in CAy, — B(R) and CAy — B(R). Further
invariants of this kind are associated with more complicated combinatorial
arrangements of subsets, such as a sequence of finer and finer partitions or
systems of subsets having the intersection pattern similar to that of 2-planes
in R3.

Making inféim (and similar invariants) T'-equivariant. Suppose we have a
discrete group T operating in X and let us redefine infdim by taking only
I'-equivariant metrics dist’ on X. We call this inf éimr and obscrve that

inféimp < inféim.

Practically, nothing else is known about this inf §imp except that an invariant
of similar nature (implicitly) appears in the non-pinching examples in §4 of
[Gr-Th]. Namely, suppose that we have a I'-invariant metric with ¥ < —1.
Then, for a given ¢ > 0, we take the maximal number p = p(T', ¢) such that
there exists a free subgroup F, C T, where the displacements of some point
Zg € X satisfy

diSt(Im ‘Pi(IO)) <e

for the generators ¢y,...,p, of F,. It follows that the ball of radius R in X
has
Vol B(R) Z exp Rpc™'. (*)

The point is that there are groups T for which p becomes arbitrarily large
while ¢ is kept bounded. Namely, this is the case for the groups [;, i =
1, 2,...,obtained by amalgamating : copies of a fixed group [ over a subgroup
I¥ ¢ T, such that a certain k-dimensional homology class & in H(I") vanishes
in I1,(T), where k should be at least two and k must not come from virtually
nilpotent subgroups in I¥. (See [Gr-Th] for a detailed discussion.) It is shown
in [Gr-Th] that p(T;,c) > i for ¢ = ¢(T;) < const(T',T”) and thus the lower
bound —(1 + £)? on K(X) satisfies

n(l +¢) 2 logi
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for n = dim X, as follows from (). Notice, that the condition K < —1
appears in the proof via an upper bound on the volumes of the geodesic
simplices of dimensions k and & + 1. This suggests the following

Conjecture. The above [-manifolds X with [ = I; satisfy
min(inf8imp, Ak, inféimr, Ary1) S (logi)™
for i — oo. Or, at lcast,
inféimy, A < (logi)™".

(Of course, we would like to have such inequalities for non-invariant inf §im,
but this appears even more difficult.)

The idea behind this conjecture is that the increase in the “branching” of I’
decreases the “relative weight” of certain subsets in 9, I" with respect to all of
8T, as OsI" increases with the “branching number” i without changing its
topological dimension. We shall see later on in 7.C3 that this idea becomes a
reality for another class of strongly branched polyhedra.

Additional remarks and questions. (a) It follows from tbe above discussion
that the infinite amalgamated product, say o, = UJ [}, cannot faithfully and

discretely act on any simply connected finite dinlm—elnsiona.l manifold X with
~00 < —C < K(X) < -1.

(b) Instead of amalgamating mutually isomorphic groups one could take dif-
ferent I'¥) 5 I and make I by amalgamating these along IV over j = 1,.. ., .
For example, one could take a sequence of compact manifolds V) of constant
negative curvature having mutually isometric (or just diffeomorphic in the
case dim V1) = 3) boundaries (compare [Gr-Th]) and then glue V), ..., V(9
together across the boundaries. The fundamental group T'; of the resulting
space V; falls into our category if dim V) > 3 (see [Gr-Th}) and one may ask
when, for example, the group [, = UT; is “totally unpinched” as, we know,
does happen for V(1 = V(® = ... In fact this is easy to show (by the argu-
ment of [Gr-Th)) if Vol¥) / log = 0. (If dim V) > 4, it is unclear if there
are such sequences of manifolds V), where every two of them are mutually
non-isometric.) On the other hand, if the boundary V' = V) C V) has a
sufficiently large collar, that is, if the normal exponential map is injective on
V'x [0, pi) for p;/log j Poedl then the amalgamated product of I'?) starting

from a sufficiently large (jo) can be arranged to act on the hyperbolic space
Hg*! for n +1 = dim V) 4+ 1 (by a simple “combination” argument).

(c) Let V be a closed n + 1-dimensional aspherical manifold and V’ C V an
oricnted submanifold of diinension n ~ 1 representing zero class in H,_,(V).
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Then for every k = 1, 2,..., there exists a cyclic ramified covering Vi — V
of order k with the ramification locus V’.

Conjecture. If n > 3 then the pinching constant of Ve goes to 0o as k — oo.

Remarks. (a) It is shown in [Gr-Th], that there are at most finitely many
values of k for which V; may have a metric of constant negative curvature
(or an arbitrary locally symmetric metric). But there is no realistic bound
on the number of the exceptional k.

(b) There arc cases where the fundamental group x,(I';) contains the amalga-
mated product of k-copies of some I over TV = my (V'), and then the pinching
constant of Vi does go to infinity (see {Gr-Th}).

(c) The pinching problem is significantly easier for the full ramified funda-
mental group x D =, (f’g) This x acts on the universal ramified cover X of
V with k-th order ramification along V', such that X/x = V. One can show,
that if X has a x-invariant metric ¢ of negative curvature pinched between
—c¢; and —1, then necessarily —¢; — —oo for k¥ — oo, provided dimV > 4.
This can be shown by first observing that Vol(X,g)/x < const, for some
constant independent of k (this follows from K < —~1), and then by giving a
lower bound on the volume of some p-neighborhood of V' C V (using ¢;) by
the argument similar to (and easier than) that in [Gro),.

(d) There are, among ¥, (where V is a closed manifold of constant negative
curvature of dimension > 4) some of which admit metrics with the curvatures
pinched between —(1 +¢)? and —1 for arbitrarily small € > 0, but yet having
no metrics of constant curvature (see {Gr-Th]). One wonders if inf §im A,
approaches 1/n in these examples (for n == dimV — 1) without becoming
equal to 1/n, and the same question applies to the e-pinched manifolds V"
constructed in the end of 7.D by surgeries over submanifolds with p-thick
collars.

7.Cs. Round trees and inféim for strongly branched spaces. The
simplest example of what we call a round tree X, is obtained by rotating an
ordinary tree T C HE C H} around a geodesic, sec Fig. 18. This X, sits
in the hyperbolic space H3 where it decomposes into uncountable unions of
quasi-isometric copies of H3, round branches, where every two intersect over
a disk. The ideal boundary 3,,X, C 8 Hg = S? is the Cartesian product of
S! by a Cantor set K, whose points correspond to the round branches.

Abstractly speaking, a two dimensional round tree X, is a two dimensional
space of negative curvature which admits an isometric action of S! with a sin-
gle fixed point zo, such that there is an isometrically embedded tree T C X,
which intersects every S)-orbit at exactly one point. To facilitate the expo-
sition we assume that our metric has constant curvature on the nonsingular
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Fig. 18

locus of X, and thus all round branches are isometric to H3. We assume
furthermore, that T is regular with exactly b + 1 edges at each vertex and
with all edges but one having the saine length § where the fixed point zo € X,
serves of the center of the exceptional edge in T, which has length 24. Thus
the ball B(R) in X around zo branches at the values R = §, 24, 34, ..., where
the boundary dB(k§) is the disjoint union of ¥~ circles of equal length. We
denote this length by L; and observe that the ratio Liy) /L is asymptotically
constant for k - » 0o, where this constant is denoted by a.

Observation. The family A, of the 1-dimensional subsets in 0 X has
inf §im A, = (loga)/(loga + log b).

The proof here is the same as for the classical hyperbolic spaces in 7.C.

Now, one can use X, as a neasuring rod to bound inf§im A, for more gen-
cral spaces, where X, (or at least a sector of X,) can be quasi-isometrically
embedded to.

Frample. Let X be a simply connected 2-dimensional polyhedron where all
2-cells are p-gons and where the link of every vertex is the ¢-dimensional
octahedral graph. Notice that all simple circuits in this graph have length
four and each vertex has degree ¢. (The simplest example for p = 3k is the
universal ramified covering of the 2-dimensional skeleton of the ¢-dimensional
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octahedron with k-th order ramification at the center of each triangle, see
[Ben), 33, [Ba-Br] and [Hag] more about such polyhedra.) If p > 5, this X
has a metric of negative corvature invariant under the automorphisms of X,
Furthermore it is not hard to see that X contains a sector of a round tree
(i.e. the part [s,5] x T C X! = §' x (T, — {zo}) C X,, where the parameters
a and b of the tree approximately are a =~ p and b & ¢. (The inclusion of
a sector into X is easier to see for the octahedral X rather than for similar
polyhedra of this type such as tetrahedral, cubical etc.) Thus inféim .4, — 0
if ¢ — oo for p being kept fixed. An interesting new feature of this example
is the possibility to have a cocompact lattice T acting on X and thus having
arbitrarily small inf §im A, for such groups ' with dim d,,T" = 1.

Remark. (a) It seems obvious (and the proof should be straightforward) that
inf§imA; — 1if p — oo for ¢ being kept fixed. To make this interesting
one should prove that infédim A4; < 1 whenever ¢ > 3, which appears slightly
harder to do. In fact one should be able to compute inf §im explicitly for our
spaces X and, possibly, for the hyperbolic groups in general in terms of a
Markov structure. (Probably, a natural framework for this is provided by the
category of Markov spaces.)

(b) Let us indicate a realization of (some of) our [ by reflection groups in
Hg. Denote by ¢ the length of an edge of the regular p-gon in Hg having all
angles x/2 and take ¢ mutually orthogonal geodesic segments of length € in
Hj emanating from a point € H}. Then take 9-(’-;—’)- plane regular p-gons in
H}, each having an orthogonal pair among these segments for a pair of edges.
Now for each edge ¢ in every p-gon P we take the hyperplane H"!(e) C H}
containing e and perpendicular to the plane of P (there are slightly less than
p9(g—1)/2 of these hyperplanes) and denote by ['(p, q) the group of isometries
of Hi generated by reflections in the hyperplanes #9~!(e). This is (easily seen
to be) a discrete (convex cocompact) group and the I'(p, ¢)-orbit of the union
of our g(g — 1)/2 p-gons is isomorphic to X. It is clear that the Hausdorff
dimension of 8,,I'(p, ¢) C S9! = 8, Hy satisfies

Hau dim 8.['(p, ¢) > (inféim A,)™"

{where A, denotes the family of 1-dimensional subsets in o X = 8,,T'(p, q))
and, probably, this Hausdim equals (infdim)~".

(c) It would be interesting to find closed manifolds V(T) of a fixed dimension
n (say n = 5) having negative curvature and =,(V') containing a subgroup
commensurable to . (Some possibility here opens by Davis’ reflection con-
struction which leads to a semi-hyperbolic reflection group I'* O T cocom-

pactly acting on R" for a given n > 5, but it is not clear how to hyperbolize
this I'*.)
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7.D. Kahler and ¢(nti)-Kahler. A remarkable and quite mysterious class
of groups [ is constituted by the fundamental groups of algebraic varieties and
certain more general complex spaces, e.g. compact Kahler manifolds. Here
we are concerned with hyperbolic groups I'. Basic examples of these T' are
cocompact lattices in U(n,1). Furthermore, if T is a non-cocompact lattice,
the shrinking of cusps of V = X/T (see 7.A) keeps us in the complex (and in
Kahler in our sense) category, so we get more examples of hyperbolic Kahler
groups. Furthermore, ramifying along totally geodesic complex hypersurfaces
and blowing down coinplex totally geodesic submanifolds in V = X/T (which
may have certain self-intersections) gives us further examples of hyperbolic
Kahler groups. Probably, there are other manipulations over H3* which would
give us such groups (compare [Mos-Siu}) but nothing definite is known beyond
this. For example, one does not (seem to) know if there are complex ramified
coverings V of locally symmetric spaces V with K(V) < 0 having ~,(V)
hyperbolic where the interesting V are those covered by H? x H2 or by X =
0(n,2}/0(n) x O(2) (compare [Tol]).

Problem. Can one characterize Kahler groups by their asymptotic geometry?
(See [Gro)zo for the first steps in this direction.)

Most interesting results concerning Kahler groups follow by the route of har-
monic maps suggested by Siu in {Siu]. For example, Siu’s results imply (also
see {Sam]) that tbe groups of constant negative curvature are a-Kahler (i.e.
anti-Kahler) in the following sense. First, we say that 1" is a Kahler group if
it appears as a fundamental group of (a possibly singular) Kahler orbifold.
In order not to get lost in definitions we only consider two cases. (1) ' acts
discretely isometrically and cocompactly on a Kahler manifold. (2) T is the
fundamental group of a complete projective algebraic variety over C.

Now we claim that such a I' does not have much in common with (groups
of) constant negative curvature. Namcly, every isometric action of T on Hg
(where n = oo is allowed) must be quite degenerate. We shall state here the
simplest result of this type.

Theorem. Let h : T — T be a homomorphism of T’ into a discrete group
T' of isometries of Hj where every non-identity element 4’ € T is hyperbolic
(as defined below). Then the image h(I') C h(I") is commensurable to the
fundamental group of a (real) surface (i.e. (') is virtually free or a surface

group).
Definition. An isometry ¥ = X — X is called here hyperbolic if

:ue:)f( dist(z,7(z)) > 0.

For example, if I'" has no torsion and Hg/T is convex cocompact (which inakes
n < oo) then all 4" € IV are hyperbolic.
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Remark. The proof of the above theorem needs significantly less than K —
-1.

In fact, the proof extends to the spaces X (in place of HZ) where a certain
curvature, denoted K¢ X, is strictly negative (and in the case where dim X =
oo it would be safer to assume infK(X) > —oo). This generalization, as well
as the theorem itself, is obtained by the theory of harmonic maps where the
condition K¢ < 0 enters via the Bochner-Siu-Sampson formula (see [Sam),
[Ca-To} and [Gro]z for more about it).

The condition K¢ < 0 is satisfied if K = —1 and then, obviously, “in a small
neighborhood of K = —17, i.e. whenever —(1 +£)? < K < —1 for some
universal € > 0. (In fact € = 1, as was checked up recently by Hernandez, see
(Her}).) Notice that, in fact, K¢ < 0 only needs a local version of the pinching
condition that is

—(1 +&)(z) < Ke(X) < —n(2)

for some positive (non-constant!) function x(z) on X. Nobody knows any
(global) asyinptotic property of X issuing from such pinching; yet we do know
that Kahler groups cannot be so pinched!

Another general result about Kahler groups which also shows that they stand
much higher in the hyperbolic hierarchy than K = —1 and polyhedral groups
with K < 0, is the non-ezistence of essential actions on trees. The proof is
obtained with barmonic maps (see [Gr-Sch)).

Problem. Give an asymptotic characterization of hyperbolic a-Kaller groups
T’ which receive few homomorphisms from Kahler groups. (In fact, it seems
more logical to use Kahler foliations “mapped” into I', rather than groups, to
define “a-Kahler”. In other words, “a-Kahler” should be an invariant in the
measure theoretic “thickening” of the category of groups.)

Specific question. Does every homomorphism of a Kahler group to a small
cancellation group (or a more general 2-dimensional group) factor through a
virtual surface group? (The harmonic maps approach may eventually work
for the fundamental groups of 2-polyhedra with negative curvature but niore
general 2-dimensional groups require a new idea.)

Ezamples of strongly pinched manifolds. To make use of the fact that e-
pinched manifolds are a-Kahler one needs examples of these which do not map
(at least in an obvious way) to manifolds of constant curvature (as do rami-
fied covers exhibited in {Gr-Th] which may have arbitrarily strongly pinched
curvature). Such examples can be, in fact, produced with hyperbolic surgery
starting from manifolds V of constant curvature K = —1. Namely, if yis a
closed geodesic in V with a p-thick collar (i.c. regular p-neighbourhood) then
one can attach a 2-handle to V x [0, 1], such that the resulting manifold V* will
have a metric with K(V*) € {—(1 + §)?, 1] for § ~ p~! max(1 + (length ¥)™')
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and with convex boundary (compare 6.A in [Gro]z;). This also applies to
finite collections of geodesics with sufficiently thick mutually disjoint collars
and also generalizes to totally geodesic (and more general locally convex)
submanifolds of dimension > 2.

Idea of the construction. Let W C V be a locally convex subset whose r-
neighborhoods W, C V are also locally convex for r € [0, p] (which means
W has p-collar). Then the boundary £, = 8W, C V has intrinsic curvature
close to zero for large p and large injectivity radius. There is an almost
isometric embedding of ¥, to the p'-sphere S(¢), for p' = p/2 in the N-
dimensional hyperbolic space I for N = 2dimV, such that the relative
curvature of X, in S(p’') is small for large p. Then we attach to V — W, the
hyperbolic ball B(p') acrass L(p) C S(p') = B(p’). The resulting singular
space (V — W,)U B(p’) can then be thickened to an N-dimensional manifold
Vv’ with almost constant curvature and convex boundary.

Question. Do manifolds V' obtained this way carry complete metrics with
K=-17

There are other natural classes of metrics (besides K¢ < 0 and pinching) de-
fined by curvature conditions stronger than K < 0; for example, a prominent
class is defined by requiring the curvature operator to be negative. Unfortu-
nately we have no asymptotic interpretation of these conditions, but it would
be quite useful to extend such conditions to singular spaces (with K < 0).

7.E. Uniform embeddings. Recall, that a large-scale Lipschitz map f :
X — Y is called a uniform cmbedding (placement in the terminology of
[Gro]ys) if the distance compression of f defined by

M;(d) = M(d) (:llng)iés:_ (f(z1)f(z2)),

for A7 = {(z1,22) € X x X [dist(z),z3) > d},

satisfies

M(d) = oc for d — oo.

Basic group theoretic ezample. A monomorphism between finitely generated
groups is an uniform embedding for the word metrics in these groups.

If X comes along with a I'-action, a uniforin embedding is called equivariant
if the pull-back to X of the metricon Y is I-invariant.

Ezample. A-T-menability (compare 7.A). A group [ is called a-T-inenable
if there is a homomorphisin I' — Iso R such that every orbit map vy —
Y(z), € R* is a uniform embedding of T to R*. Such an embedding is,
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obviously, equivariant. Conversely, if I' admits a [-equivariant uniform em-
bedding into R*, then it is a-T-menable since the Hilbert space structure on
the span of some orbit is uniquely determined by the Hilbert metric restricted
to this orbit.

Question. Is every amenable group a-T-menable? (This is easy for finitely
generated nilpotent groups.)

Remark about H® and HE. One can replace R in the definition of a-
T-menability by HZ or HE (sec 7.A). Then one can refine this notion by
imposing extra conditions on the action of T' on Hg® and H, such as the
hyperbolicity of the action of T defined in the previous section. As we know,
most Kahler groups admit no hyperbolic actions on Hg® though they may
have such actions on HE. This shows that there is no “hyperbolic” equiv-
ariant embedding of HZ to Hg". In fact every such embedding is, probably,
parabolic in a certain sense (e.g. has the image in a horosphere, as the em-
bedding indicated in 7.A).

Problem. Let T be a discrete hyperbolic group of isometries of H&. Give a
geometric criterion on I' (expressing the idea that T is sufficiently large) that
would rule out any discrete hyperbolic action of I' on Hg°.

7.E;. Almost equivariant embeddings. A map of a I'-space X into a
metric space Y is called almost equivariant, if the induced distance function,
say d on X x X is almost invariant,

[d(¥(x1),¥(z3)) — d(z1,22)] £ C < 00

forall z), z2€ X and vy € I".

This definition is motivated by the observation by Z. Sela (see [Sel]) that the
narrowness of (quasi) geodesic simplices leads to such embeddings ' — R*.
For example, let X be a simply connected manifold with —oo < —C <
K(X) < —1. Fix a number € > 0, consider a geodesic segment [z;,z;] C X
between two points and let [z1,22). € R® = Lz(X) be the characteristic
function of the e-neighborhood U, ([z,,2,]) C X. Then

o, zale + [zo, Tale = [z1, Z2)ell,,, < 6 (+)

for some constant § = §(X, ) and all triples of points zo, 1,72 in X.

Now we map X to R® = Ly(X) by z — [zo,z], for a fixed zo, and observe
using () that this map is an almost equivariant uniform embedding for T =

Iso(X).

Remark. One can introduce a sign into the inequality (*) by norrnally pro-
jecting U.([z1,z2)) onto the segment [z,,z;] and pulling back the standard
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1-form dz from this segment to U,. Thus we obtain a map from X X X to the
Ly-space of 1-forms on X, say R® = L; A'(X), denoted (z,,2;) ~— [z;, 4],
and satisfying the following (almost) cocycle relations

[21, 32]: = —-[1:2,1:112

n[Io, o1, + [z1, 72]; + [22, Io]:nb' <.

This says that the 2-cocycle
(21,22, 23) — [20, Ta], + [21, 22],, + [2270),

(on X x X x X) with values in L; A'(X) is bounded and thus, represents a
(bonnded) cohomology class k, in H2 4(T; Ly A'(X)) for the group T of the
isometries of X. If h = 0 then X equivariantly embeds into Lz A'(X) which
makes I a-T-menable. Thus, h, # 0 for some hyperbolic groups T but I do
not see what happens in general.

Additional questions. What are possible uniform embeddings between clas-
sical symmetric spaces X and Y? Namely for which X and Y does there
exist one of the following three: uniform embedding X — Y, uniform almost
cquivariant embedding X — Y, uniform equivariant embedding X — Y?
For example, let X be a (finite dimensional) irreducible symmetric space of
rank > 2 and Y = Hg. Then, the super-rigidity techniques (harmonic maps
and/or ergodic theory in the spirit of Margulis-Zimmer) should eventually
rule out invariant uniform embeddings X — Y. If we do not impose any
invariance condition, then a uniformn embedding X — Y does not seem im-
possible (unlike the case of Y of finite dimension treated in the next section)
and I dare to make no conjecture for the almost equivariant case.

7.Ea. Monotonicity of rank under uniform embeddings. We want
to show that spaces Y with K(Y) < 0 having (an appropriately defined)
rank > 2 admit no uniform embeddings into hyperbolic spaces X of bounded
ezponential growth (see below) e.g. into word hyperbolic gronps.

Compression lemma. Let X be a hyperbolic space and f : R? — X a
uniform embedding. Then it is strictly distance compressing, i.e.

limsup distx(f(a), f(b)/|la —&|| — O, (+)

lla—bj|—sc0

where ||a - b| = distga(a, b). Moreover,

distx(f(a), f(8)) < ¥(lla - b)),

vhere the function y(d) is determined by X, the Lipschitz constant of f and
the distance compression M(d) of f, and where y(d) satisfies,

d'"¢Y(d) =0 for d — oo.
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Proof. Take the closed rectangular curve in R? with vertices a, b, ', ¥,
where |la = o|| = |la— b||% and where eventually [la — 8| — oco. The f-
image of this curve in X (see Fig. 19) bounds a surface S of area <|la — b||
(by the hyperbolicity of X). We intersect § with the boundaries of the p-
neighborhoods of the f-image of the edge [a,a’] and observe tbat the lengths
£(p) of these intersections satisfy (by the coarea formula)

[t) < areas < ol
0

On the other hand, if p < D = dist(_f([a,a’]),f([b,b/])) then the curve {(p)
joins the f-images of the segments [a, b] and [a’, #'] which lie distance ||a - b||}
apart in R%. Therefore &(p) > M/(]la — b||*) for these p. It follows that

DM (l|la — b|¥) < const ||a — b]
and so D/||a — 8|| — O for ||a — b]| — co. Q.E.D.

f(a")

f(a) ¢

Fig. 19

Now, we assume X has bounded growth, i.e. the concentric balls around a
fixed point have
card, Bx(R) SexprR

where the £-cardinality refers to the minimal number of e-balls needed to
cover B(R). One can use here any positive € and we stick to card=).

Then we impose the following two conditions on Y.

(a) For every two points y and y’ in Y there exists a A-quasi-isometric embed-
ding R? — Y whose image contains y and y’ and where A is somne constant
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independent of y and y’. (This condition expresses the idea of RankY > 2.
In fact, our present application needs significantly less than this condition.)

(b) Y has at least exponential growth, i.e. every R-ball in Y satisfies
cards B(R) > constsexp uR

for all § > 0 and a fixed 4 > 0.

Claim. There is no uniform embedding Y — X.

Proof. The compression lemma shows (with condition (a)) that every uniform
embedding f : Y — X strongly contracts distances, i.e.

dist(f (w1) f (y2)) < ¥(dist (y1,2))

for some function ¥(d) satisfying
d'y(d) =0 for d — oo.

Thus every R-ball C Y goes into a much smaller ball (of radius ¥(R)) in X,
and as the map is an uniform embedding it does not essentially diminish tbe
e-cardinalities, i.e.

carde=1 f(B(R)) > card; B(R)

for some § > 0 (depending on M;). But the function exp$(R) is incompa-
rably smaller than exp R since Y(R) is by so much smaller than R, which
immediately leads to the desired contradiction.

Remark. 1f X has bounded growth then the function ¢ in the lemma can be
bounded by ¥(d) < d* for some a < 1. This is scen by applying f to parallel
segments [a;, b;] in R? fori = 1,... .k = ||a; = b;(|° and [|a; ~ aip1]| = |la — B]]”
for suitable 8 and 4. Notice that the standard horospherical embedding
of R? = I3 has ¢(d) ~ logd and it is claimed in 4.3.B of [Gro];s that
¥(d) < logd in general. Yet, now I doubt this is true (though it is true
{or rotationally symmetric maps of R? to I3, which the rcader is invited to

check).

Modification and generalization to the situation where “Rank” X > 2. We
want to modify the above non-embedding claim by somewhat relaxing the
conditions on X and [ while adding restrictions on Y. First, to make the
idea clear, we assume Y decomposes into a Cartesian product of two geodesic
metric spaces Y = Y] xY;. We consider an arbitrary Lipschitzmap f : Y — X
and then we make the following assumption on the restriction of f to every flat
square Og C Y, i.e. Qg = [y1, 4] % [y2, ¥2], d = dist(s, y7) = dist(ya,v}), where
'v1,y}) and [y2, y5] are minimizing geodesic segments in Y; and Y; respectively.

(FV2). The filling area (2-volume) of the f-image of the boundary 304 in X

satisfies
Fill Area f(904) < ¢ (Areany = &%)
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for some function @(A) satisfying A~2p(A) — 0 for A — co. (Notice that
this condition is satisfied for all f if the space X is hyperbolic.)

What we claim now is the following

Compreassion alternative. There are two possibilities:

(1) The map f restricted to Yy = Yy xy2 C Y = Y, x Y; for a given point
y2 € Yz is strictly distance compressing at a given y,,

dist(f(1), f(41)) < ¥(dist(y1, 1))
Jor some (d) satisfying d~1¢p(d) 0 andally, in Y.

(2) There exists a sequence of subsets CR CY, R=1, 2,..., such that the
projection of Cr to Yz covers the R-ball in Y; around y; and such that
the f-image of Cr in X can be covered by const R balls of radit (R) for
the above function .

An immediate consequence of this alternative is the non-existence of a uniform
embedding f : Y — X, whenever Y] and ¥; grow exponentially while X has
bounded (exponential) growth. In fact we get slightly more than “non uniform
embedding”. Namely,

For every Lipschitz map f : Y — X there ezist points y; and y; in Y, such
that dist(y;,y!) — oo while dist(f(y:), f(y!)) remains bounded. (If X has
bounded local geometry we may even have dist(f(y:), f(y))) — 0.)

Proof of the alternative. If (1) is violated we find pairs of points y; and yj in
Y: within distance & R? — oc such that the distance between f(yi,y2) and
flyl,v2) in X is > cR?. Then we take an arbitrary point y} in the R-ball in
Y2 around y, and look on the f-image of the rectangular O = [y, %;] x [v2, y3):
Then the boundary f(80) in X can be filled in by a surface S of Area§ <
¢'(Area0) where

a7'¢'(a) » 0 for a — oo,

as easily follows from (FV3). Next, as in the proof of the compression lemma,
we intersect S with the boundaries of p-neighborhoods of f(y x (y2,y3)) and
thus find a point y' € Y] x Y; projecting to y; whose f-image lies ¥-close
to f(ly1, 1) X y2), meaning dist(y, f [y1,4}] x ¥2) < ¥(dist(yz,y3)). Then the
union of these y' over all y; € B,, (R) constitutes our set Cr. Q.E.D.

Generalization to Y =Y, x Y3 x ... x Y;. Here again we look at a Lipschitz
map f:Y — X and assume it satisfies the following condition

(VFi). The filling volume of the f-image of the boundary of cach d-cube
Oz = [y, 41) X ... % [k, vi] satisfies

Fill Vol f (804) < o(Vol Oy = d¥)
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for V'p(V) =+ 0,V — oo.

Notice that (V F}) is satisfied for all Lipschitz maps whenever X is weakly
k-hyperbolic according to the following

Definition. A metric space X is weakly k-hyperbolic if the unit (k — 1)-sphere
mapped into X by a A-Lipschitz map has

Fill Vol < p(A%)

for some ¢ satisfying A~ () = 0. (The reader may work out the large-
scale rendition of this definition.)

The condition (V Fy) for cubes obviously yields a similar condition for all rect-
angular solids and we use it for solids with edges of the lengths R, R¥-,... R
for R — 0o. If the R*-edge of such a solid is not much compressed by f, we
find an intersection of the filling of the f-image of our solid with the p-
neighborhood of (one of the two) (R*~! x ... x R)-faces whose (k — 1)-volume
is roughly (p-small (i.e. much smaller than B*~! x R*~2 x ... x R). This allows
an induction on k and leads to the following

Conclusion. Given a Lipschitz map f : Y — X satisfying (FVy), one can
find subsets CR CY, R=1, 2,..., such that the projection of Cr to some of
Y;, i=1,...,k, covers an R-ball around a given point, while the f-image of
Cr in X can be covered by const R¥~! balls of radii W(R) for some function
¥ satisfying R-1¢(R) — 0 for R — oco.

Corollary. If the spaces Y;, i = 1,...,k have ezponential growth and X is
a weakly k-hyperbolic space of bounded (ezponential) growth, then there is no
wniform embedding.

' xVox...xYi—= X.

Further generalization. We want to extend this result to more general spaces
Y such, for example, as symmetric spaces Y of rank k of non-compact type.

Ezponential rank. We define by induction a number, called exprank Y. First
we say that
exprankY > 1

if for each é > 0 every R-ball in Y has
cards B(R) > constsexpuR
for some constants consts > 0 and x > 0. Then the inequality
exprankY > k

signifies that Y contains sufficiently many (as explained below) subspaces Y’
which are A-quasi-isometric to Cartesian products Y’ = Y” x I, where [ is a
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segment in R and exprankY” > k — 1, and moreover, such that the implied
constants g, consts and A are the same for all spaces in question.

Ezplanation. “Sufficiently many” meauns that there exists a number k such
that every two points in ¥ can be joint by a connected chain (i.e. union) of
special lines, which are y” x F C Y’ C Y for various Y’ in Y and y” in Y.

Ezamples. (a) The product Y of k spaces Y; of exponential growth has
exprank > k. A special line here is a geodesic segment contained in some
subspace y3 X ... x Yy X Yi Xy x... xyu CY.
(b) Let Y be a symmetric space of noncompact type (i.e. K(Y) < 0). It
uniquely splits, ¥ = Y5 x R, where Y, is semi-simple, i.e. has no Euclidean
factor. Then

exprank Y > rank Y.

(In fact the two ranks are equal in an obvious sense.) The special lines here,
in the case Y = Yy, are the supersingular geodesics v € Y where the set Y’
of the geodesics parallel to v splits by Y' = Y” x R where Y has rank k — |
and no Euclidean factor.

Now we come to the final version of our

Non-embedding theorem. Let X be a weakly k-hyperbolic metric space of
bounded growth and let exprankY > k. Then there is no uniform embedding
Y- X.

The proof proceeds by induction on k, moreorlessasforY =¥} x... x ¥4

Corollary. Let X and Y be symmetric spaces of non-compact type satisfying
rank X < rank Yy, where Yy is the semi-simple part of Y. Then there is no
uniform embeddingY — X.

Remarks. (a) In the case rank X = 1 we may relax the assumption on Y =
Y, x R¢ by requiring that
rankY > 2 and rank(Yp x R) > 2

(see compression lemma and the subsequent discussion), but I do not know
if in the general case the condition rank Yy > k can be replaced by

rankY >k and rank(Yo xR)> k.

(b) There is no known geometric obstruction for uniform embeddings into in-
finite dimensional spaces. In particular, it is unclear whether every separable
metric space can be uniformly embedded into the Hilbert space R®. On the
other hand, such obstructions are known for Lipschitz uniform embedding.
(Recall that our definition requires Lipschitz on the large scale only.) For
example, the space ¢, admits no uniform Lipschitz embedding into £, = R,
because a 1-Lipschitz map of the n-dimensional cubical graph 0" into R®
contracts some great diagonal in OF by factor (at least) \/n, as cvery analyst
knows.
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8. Lp-Cohomology

L,-cohomology and conformal dimensions at infinity; L;-Betti numbers and
spectrum near zero; vanishing and non-vanishing of L, H*(X).*

Let X be a uniformly locally bounded simplicial polyhedron, i.e. where each
k-simplex has at most ¢, neighbours, for some ¢ = ci(X). We denote by
¢,C* for p € {1, 00), the space of p summable real cochains of degree k (which
are {,-functions on the set of k-simplices) and observe that the coboundary

dy : €,C* - L,C*H

is a bounded linear operator. Then we define the non-reduced £,-cohomology
by Kerd, /Imdi_, and the reduced £,-cohomology by

LH (X) = Kerdy/ Tmdy,

where the bar over lm signifies the closure in the £,-topology. One says the
{,-cohomology is (non)-reduced in dimension k if Imd; is (not) closed.

The £,-cohomology is functorial for uniformly proper (in the obvious sense)
simplicial maps f : X -5 Y as the induced homomorphisms on cochains
send £,C*(Y) to £,C°(X). Furthermore, the induced homomorphisin f* or
{,-cohomology is invariant under uniformly locally bounded simplicial ho-
motopies as these induce chain homotopies in the category of complexes of
topological vector spaces and bounded linear operators. In particular, if X and
Y are uniformly contractible, mutually quasi-isometric polyhedra, then their
{,-cohomology is isomorphic. (Recall that the polyhedral simplicial structures
carry along natural metrics associated with then.)

If X is a smooth Riemannian manifold, one can also define the L,-cohomelo-
gy of the de Rhamn complex of smooth L,-forms with differentials in L,. If X
has uniformly locally bounded geometry there is a uniformly locally bounded
triangulation of X, where all k-simplices are nniformily bi-Lipschitz to the
standard k-simplex. Then the usual proof of the de Rham theorem shows

* I owe several important remarks in this section to P. Pansu.
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that the complexes of £,-cochains and L,-forms are mutually chain homotopy
equivalent and, hence,

L,—cohomology = #,—cohomology,

and the isomorphism between L; and ¢, commutes with every isometry group
T of X preserving the triangulation.
Two essential new features of £,-cohomology are:

(i) If X is a connected infinite complex then, (obviously)

LH*(X) =0 for 1 < p<oo.

(11) Typically, if ZP_H"(X) # 0 for certain k and p, then this cohomology is
infinitely dimensional. For example, if X admits an isometryp: X — X
with unbounded orbits, then

LI (X)£0= dimLH*(X) = oo,

provided p # 1, 00.

Linear proof: {,-homology. Using the complex of £,-chains 3 : {,C. — ¢,C,
one defines £,-homology and observes that £,H, is dual to f,_ll* for i+ :- =1
Thus every non-zero h € £, H* has non-zero pairing with some k' € £, H, and
if we apply the iterates of ¢ to A’ we see that

(LK) = 0.

lence, the span of (¢*)*(h) in £, H* is infinite dimensional.

Non-linear proof: p-harmonic cochains. For every cohomology class h there
exists a unique closed cochain ¢ € £,C* (closed means dc = 0) which mini-
mizes the ;-norm in the class h of c. Such a ¢ satisfies a certain non-linear
equation, written A,c < 0, where A, denotes the gradient of the £y,-norm
restricted to the space of the cochains cohomologous to (i.e. belonging to) A.
Since the £,-norm is strictly convex for p # 1, oo, the equation has a unique
solution ¢; moreover, if we have some ¢ with ||A,c’||lp < elid|l,, then the
extremal c lies €’-close to ¢ with ¢/ — 0 for ¢ — 0.

Now we realize a non-zero k by our extremal ¢, take ¢ = ¢, ¢; = (p")"¢,

cs = ()" (c), . . ., for a fast growing sequence of numbers 0 € i) € i; < ....
k

Then every non-zero linear combination ¢ = ¥ a;c; is a non-zero almost A

=1
harmonic cochain, i.e. [|A,al, < ¢|ol,, which implies & is non-cohomologous
to zero.
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Corollary. Let the above X be uniformly contractible and o be a translation
(parallel to the identity) i.e. sup dist(z,(z)) < co. Then L,H = 0 for
z€

p#1,00.

Proof. The extra conditions on X and y show that ¢* is an isomorphism on
LH".

Ezample to the proof. Let X = X' x R, where X' is arbitrary. Then
Z,T =0 for p # 0,00. In particular, [,H*(R*) =0 for p £ 0,00 and n > 1.

Remark. The n-dimensional {,- cohomology of R™ equals (by an easy argu-
ment) to the cohomology with the compact supports and this equals R. Also
the n-dimensional £.-cohomology of R" is non-zero and, moreover, infinite
dimensional.

First non-trivial ezamples. (a) Let X be the infinite regular tree with three
edges at every vertex. Then & H, # 0 for all s # 1, where a non-trivial
£,-cycle is indicated in Fig. 20.

Fig. 20

This cycle has non-zero pairing with every non-zero 1-cochain ¢ supported on
a single edge. It follows that the groups ?jl are infinite dimensional for this
tree.

(b) Quasi-isometrically embed X into the hyperbolic plane HZ as a tree with
geodesic edges and normally project H3 onto an edge. Then our ¢, made into
a smooth 1-form supported on this edge, lifts to a closed 1-form on H which
is, clearly, L, for every p > 1 (compare Fig. 22 in 8.C;). Thus

LH'(H3) #0 for p#1,00.
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(c) Generalize to Hg for n > 2 and observe that the pull-back form on H isin
L, for every p > n—1, and it non-trivially pairs with the ¢,-cycle represented
by the tree X C H2. Thus Z,H' (H3)#0forp>n—1.

(d) Replace Hg by an arbitrary contractible n-dimensional manifold Y with
negative curvature pinched between —1 and —(1 + ¢€)2. Then the above con-
struction shows that

LH (Y)#0 for p>(1+¢)n—1).

This result is due to Pansu (see [Pan}s7) who also shows that £, H,(Y) =0
for p < (n—1)/(1 +¢).

(e) Take a conformal map ¢ (“Poincaré model”) of H} onto the unit ball
B C R" and observe that conformal maps preserve the L,-norm on k-forms
for kp = n. Thus, bounded k-forms w on B pull back to L,-forms on Hg for
p = n/k. This applies, in particular, to the closed form w = dz,Adz;zA. . .Adz,
on B C R"™ which is non-trivial in IZIT*(HE), p = n/k. Indeed, take the
complementary form ' = dzi41A.. . Adz, and observe that the (cup) product
of the two pullbacks, i.e.

W) A (W) = (dzy A ... Adzy,)
is non-zero in TyH" (Hp) because it integrates over HZ to

/d:,A...Ad:,.:VolB;éO.
B

It follows that both forms *(w) and ¢*(w’) represent non-trivial cohomology
classes in L‘,.,,,ﬁ (Hg) and Lojn_i H * (Hg) respectively. In particular, if
n = 2m, then the m-dimensional L2-cohomology of Hg is non-zero. (One can
show that the L;-cohomology of /I} is multiplicatively generated by the 1-
dimensional L,-cohomology. One also knows, that the k-dimensional reduced
La-cohomology of Hg vanishes for all k¥ # n/2 and tbis remains true for all
n-dimensional symmietric spaces of non-compact type.)

(f) Maps with p-summable gradients. Let an n-dimensional manifold X admit
a smooth map ¢ : X — R" such that

() JDy|P € 0o for some p > 1,
x

(i) S| A" ]| < oo, where A™ denotes (the action of) the differential Dy on
X
the n-th exterior power of T(X), (this is, in plain words, the Jacobian
of ).

(i) f@*(dzy A...dz,) # 0, (which makes sense in view of (ii)).
x

Then the form w = ¢*(dzy A ... A dzi) lies in L, for every ¢ > p/k and
W = p*(dTrpr A ... Adzy) is in Ly for ¢ > 21, Since fwAw' #0,w
x
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and W’ represent non-zero cohomology classes in L, H*(X) and Ly H* *(X),
provided & + 1 > 1; in particular, L,H*(X) # 0if ¢ > pfk and | + ? >1.
More generally, if we replace (i) by

(1) /|| A*o||* < 0o for some k < n/2 and ¢ > 1,
X

we conclude that

()e /n/\ltp“r < oo for £=n—Fk and r = gk/l
x

and that L H*(X) # 0, provided ¢! + £/gk < 1. In particular, if k = n/2
and ¢ > 2, then the k-dimensional L,-cohomology of X is non-zero. We
shall look later on at such maps X — B C R" for manifolds X with pinched
negative curvature and for symmetric spaces of non-compact type, as we shall
continue this geometric discussion in section 8.C; but first we want to present
a remarkable special feature of the Lj-cohomology.

8.A. Betti numbers made {,. Suppose, our polyhedron X comes along
with a discrete action of a group I such that X/T is compact. Then, following
von Neumann and Atiyah (see [At]), one can define (see below) for each
k a certain real number called the von Neumann dimension or the €;-Betti
number.

RY(X : I') = dimp £ H*(X)

which is an invariant of the Hilbert space & H*(X) with the unitary -action
induced by the action of T' on X and which expresses the intuitive idea of the
ordinary dimension divided by the cardinality of T.

If X is k-acyclic, then h* depends only on I and is denoted h*(T). Notice that
for k > 2 a k-acyclic cocompact I-space does not always exist, but h*(I') is
defined anyway, though it may be infinite. (See [Ch-Gr); 3, where the reader
finds details and references.)

Definition of k*(X:T). Let £,C* denote the space of £;3-cochains on X and
£2H* C £,C* denote the orthogonal complement of the image of the cobound-
ary operator in its kernel,

LH* =kerdy © Im di_,.

Clearly, £;H* is canonically isomorphic to EI_I*(X). (The cochains ¢ in &;H*
are called harmonic as they satisfy the combinatorial Laplace equation (d*d+
dd*)(c) = 0.) We denote by P* the orthogonal projection £;C*(X) — £H*
and observe that the operator Py (being a bounded operator on £;) is given
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by a unique kermel which is a function 11¥(,a”) on the pairs of oriented k-
simplices in X, such that

(P*(c(0))) (") = T T¥(0,")c(o)

and where II is skew-symmetric for the changes of orientations of o and o',
Then we observe that the function try(a) = II*(s, o) is [-invariant on the set
Sk of the non-oriented k-simplices of X. We denote by I, the subgroup in T
consisting of the transformations mapping o into itself and observe that the
function o + cardT, on S; is [-invariant and thus is defined on the (finite!)
set of T-orbits, denoted S = Sk /1’y where the above function tr is defined as
well. Now we set

tracer P* = Y (card I5) ' tra(7),
oES),
and define
h*(X : T) = dimp &, HY(X) = dimr £H* = tracep P*.
(Notice, tbat Ind; disappears from the formulae if the action of I' on X is
free.)

Here are some basic properties of the numbers A* which indicate their close
similarity to the ordinary Betti numbers.

MAX :T)=0¢& lg_Hk(X) = 0. In particular, if X is contractible,
the vanishing (or non-vanishing) of A*(I') = A*(X : I') is a quasi-isometry
invariant of .
(2) R°(T) = (card T')!. In particular, h°(T') = 0 if and only if I" is infinite.

ko .
(3) Kiinneth formula. h¥(Py x T3) = 3 h{(T',)h*~*(I'z) (with the convention

i=0
0-o0o = 0 if some of h* happens to be infinite). For example, if [y and T'; are
infinite then A'(T'; x I';) = 0.
(4) Define the £;- Euler characteristic by

&im X o
Xe(X:T) = Y (~1)R(X :T).
i=0
Then define the orbi-Euler characteristic of X/I' by
Xon(X/T) = o(=1)" (card T5)™",

where the summations take place over all # € § = U S, for 5, = ST

and where S, denotes the set of the k-simplices in X. (lf the action of I' on
X is free, x,, equals the usual Euler characteristic x(X/T).)



8. L,-Cohomology 225

The following fundamental relation easily follows from the basic formal prop-
erties of the von Neumann dimension (which we did not explain) but it was
brought into focus relatively recently by Atiyah in the framework of his more
general (and more profound) Lj-index theorem (see [At]).

Euler-Poincaré-Atiyah formula (see [Gr-Ch}).
X[, = x“b‘ (*)

This formula is especially useful where X is a connected infinite (to make
% = 0) 2-dimension polyhedron. Then (*) reduces to the relation

B3(X :T) — B (X : T) = x_,(X/1)

where x_, is an easily computable (rational) number. Now we can sce, that
if X,y < 0, then BI'(X :T) # 0 and if X, >0, then HH (X : T) #0.

(4) Ezample. Let T be a small cancellation group with no torsion given by s
generators and r relations. Then x_, =r + 1 — s and therefore

s>r+1=LH (T)#0

and
r>s—1=>LH(T)£0.

(Here L H" (T') refers to L,H (X) for the universal covering X of the (aspher-
ical!) polyhedron V presenting I".)

Notice that there is no direct proof of the above non-vanishing properties for
£2H*(T'), nor are such properties known for £, H*, where p # 2.

(4)" Let us generalize (4)’ by allowing torsion. Namely, let

= (71»"'a75 I (wn)ﬂ - l,...,(wg)z" = 1)

Tben, if the presentation satisfies a small cancellation condition and, hence,
V = X/T for a contractible 2-polyhedron X with the action of I" having fixed
points of orders ¢; on the 2-cells corresponding to the relation (w;)** = 1, then

xorb=l—a+ze‘-".

i=1
In particular,

s>1+Y ¢! = GH'(T) £0.

Notice that the ordinary first Betti number can be easily zero for such a group
L.
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Question. Can one actually compute h! and h? in the examples (4)’ and (4)"?
For instance, let T' be a small cancellation group with two generators and a
single relation. Can one ever have & H () # 07

8.A,. Vanishing theorems for A‘. The only known means for computing
the £;-Betti numbers consists in combining the Euler-Poincaré-Atiyah for-
mula with some vanishing theorems, where one may use in the process some
simple linear (homological) algebra, such as the Kinneth formula, spectral
sequences, Mayer-Vietoris, etc. Here is the list of known vanishing theorems.

(A) Amenable groups. Every amenable group T' has h*(T') = 0 for k > 0.
Furthermore, if T' admits an infinite amenable normal subgroup then h¥(T) =
0 for all k=0, 1,..., (see [Ch-Grl3).

(A1) Corollary. (Generalized Gottlieb-Stallings-Rosset theorem.) Suppose T
admits a free discrete cocompact action on a contractible polyhedron and there
ezists an tnfinite normal amenable (1naybe, infinitely generated) subgroup in
[. Then the ordinary Euler characteristic x(T') = 3(—1)'¢'(T) vanishes.

(Az) Remark. Let X be a contractible polyhedron which admits a cocompact
action of an infinite amenable group I'. Then

LH(X)=0 for1<p<oo and k=0, 1,....

This can be shown by the geometric argument used in [Gro)s in the case
p = 2. Probably, all of (A) generalizes to p € (1, 00).

(B) Symmetric spaces. If X is a symmetric space of non-compact type
then the reduced L;-cohomology vanishes everywhere except for the middle
dimension (as follows from Harish-Chandra’s theory of discrete series). In
fact, it vanishes in the middle dimension if and only if the Euler-Poincaré-
Chern-Weil form @ on X is zero.

This leads to the similar property of (not necessarily cocompact) lattices in
Iso X by the following

Theorem (see [Ch-Gr);2). Let X be a complete contractible Riemannian
manifold with uniformly bounded local geometry (e.g. having |K(X)| < const
< oo and InjRad(X) > ¢ > 0) and T be a discrete faithful isometry group
acting on X with Vol X/T' < oco. Then the L;-Betti numbers of X (which can
be defined and which are finite in the present case) are equal to those of T,

h*(T) = dimr L H*(X) < oo.

Furthermore, if X is T'-equivariantly homotopic to a I'-space Y where Y/T
is compact (e.g. X is a real analytic Riemannian manifold with K(X) < 0),
then
dim X ) )
X(T) = Xl ¥/T) = X, (X :T) = - (=1 dime LH(X).

=0
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Corollary. Let T'; and a I'; be lattices acting on some symmetric spaces X,
and X; such that the Euler form Q, on X, is zero while Q; on X3 is non-zero.
Then I'y is not quasi-isometric to I's.

Remark. One believes that 'y is not quasi-isometric to I'; unless X, is quasi-
isometric to X;. (A problem here appears when I'y and I'; are non-cocompact.
The known techniques are sufficient for the implication that X, is quasi-
isometric to X3 = Iso X, is isomorphic to Iso X, which is not very useful
for non-cocompact Ty, { =1, 2, as these are not quasi-isometric to X;.)

(C) Kdkler manifolds. Let X be a geodesically complete Kéhler manifold
with uniformly bounded local geometry. Then ml()() =0 unless X admits
a proper holomorphic map onto a Riemann surface Y such that the implied
map is ['-equivariant for T = Iso X and some homomorphism ' = Autc Y.

Notice that most X do not admit proper holomorphic maps to Y. For
example, the existence of such a map necessarily makes H,_3(X) # 0 for
n = dimg X.

The above vanishing theorem extends to L, H*, k > 2 if X is hyperbolic and
H?*(X) = 0. Moreover,

If the Kahler form w on X is the differential of a bounded !-form on X, then

LiH¥(X) =0 for k # dimc X.

Remarks. (a) The proof of these vanishing theorems uses the L;-Hodge theory
(see [Gro)15) and does not extend (at the first sight) to the L,-cohomology

for p £ 2.

(b) The middle dimensional L;-cohomology is known to be reduced and non-
zero under the above assumption w = d(bounded). This is proved in [Gro]zo
with a suitable Ls-index theorem.

(C1) Quaternionic manifolds. Let X be a geodesically complete locally sym-
metric space modelled on (i.e. locally isometric to) Hg". This space comes
along with a canonical 4-form Q. This Q has the same essential features as a
Kahler form (pointed out to me by D. Toledo and P. Pansu with the reference
to p. 419 in [Bess]) which allow an extension of the above Kahler discussion
to X. (This was also observed by K. Corlette.) Thus, if Q@ = d(bounded)
then Lah*(X) = 0 for k # 2n and T;H "(X) # 0.

(D) T-groups. If a group I’ is Kazhdan's T, then A!(T) =0 (as is well known
and easy to prove). In particular, every factor group I' of a quaternionic lattice
has A'(T') = 0 (though it may have A*(TI") # 0 as we shall sce later on). On
the other hand, we recall that there exists a cocompact lattice Ty C O(n, 1),
for every n > 2, which admits the free group F; as a factor group and so
h'(T'y) = 0 does not automatically yield the same for factor groups.
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(E) Pinched manifolds (sec [Don-Xaj). If X is a simply connected, geodesi-
cally complete manifold with a sufficiently pinched negative curvature, namely

—l_<_K(X)5—c’<1—-(n_2)2, )

n—1
then LyH*(X) = 0 unless
k=n/2 for n =dimX even

or

ntl
2

k= for n odd.

Ezample. Look at the fundamental groups I’ of ramified coverings of closed

manifolds of constant negative curvature along totally geodesic submanifolds

of codimension 2. Some of these coverings do admit pinched inetrics as in (%)
see [Gr-Th}) and thus £, H*(I') = 0 for [k — 2| > 1.

Remark. The proof of Donnelly-Xavier in {Don-Xa) uses polar coordinates
in X and generalizes to L,-cohomology. In fact, using polar coordinates one
can efficiently study the L,-cohomology as a function space on the sphere at
infinity (see [Str]i, {Pan]e). An important result here is due to Pansu shows
for —1 < K(X) < —¢? < 0 that the k-dimensional L,-cohomology is reduced
for

c(n—k)

E-—-1"
(where “reduced” means that the image of the exterior differential is closed
in the space of k-forms). The techniques employed by Pansu may eventually
prove useful in settling the best pinching constant problem for tbe spaces
quasi-isometric to HZ", H* and HYS.

p<tl+————

Question. Let V be a closed manifold of constant negative curvature and
let X — V be an infinite regular (Galois) covering, where the fundamental
group m(X) C x1(V) is normally generated by a closed geodesic v in V
with a sufficiently thick p-collar (compare the end of 7.D). Does then the
k-dimensional L;- cohomology of X vanish for k # 3, "fl? (We know t.his
does happen for locally symmetric spaces modelled on H2", H5* and H{E.)

(F) Weakly branched polyhedra. Say that an n-dimensional polyhedron X is
weakly branched if every open n-simplex is contained in an open connected
subset X’ C X such that X’ is an infinite subpolyhedron in X which is also
a pseudo-manifold, i.e. every (n — 1)-simplex in X has exactly two adjacent
n-simplices. It is obvious, that every n-dimensional £;,-cycle in X for p # o0
is zero. Hence,

LH (X)=0 for p#1,00.
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Ezample. Let P be a finite connected 2-dimensional polyhedron and & C P
be the subcomplex consisting of the edges having k # 2 adjacent 2-faces.
Suppose each connected component F; in the complement P — £ has mﬁmt.e
image of 7, (P) — 7,(P). Then the universal covering X = P has LH (X)=

0 and so

R (X : m(P)) =1—x(P).

In particular, the fundamental group of a connected surface has

B (x)(P)) =1 - x(P) and h¥(xy(P))=0 for k> 2.

(G) Vanishing conjectures. It was suggested some 15 years ago by 1. Singer
that the fundamental groups T of closed manifolds V' with non-positive curva-
ture must have h*(T) = 0 for k # dim V/2. (This would imply that x(V) > 0
for dimV = 4m and x(V) < 0 for dimV = 4m + 2, which remains an
open question at the present day.) In fact, for all we know, this may be
true for the closed aspherical manifolds V with no assumption on the cur-
vature and also for the hyperbolic groups T having d,,I' homeomorphic to
the sphere S"~!. On the other hand, one cannot exclude a counterexample
among (strongly pinched) ramified coverings of closed (2k + 1)-dimensional
manifolds of constant negative curvature. Recall that H2**! has non-zero,
non-reduced cohomology L;H**' which may lead to m“l # 0 for some
ramlﬁed coverings of 1]2"+I In fact, non-zero L, H(HE) does breed non-zero
LH (and hence, T, H ) for perturbations of the constant curvature metric,
such as g. = dt? + e'dz? + e('*9dz3, as was shown by M. Anderson (see

[And],).

An important source of groups I with A*(I') = 0 comes from direct products
I'o x Ty, where Ty and T, are infinite (and thus have h° == 0) and where
hi(I'y) =0 for i =0,1,...,k— 1. One wonders whether this remains true for
semidirect products under certain finiteness assumptions. (These are needed,
as is seen in the example of F; = Fo, < Fy.) lere is a specific

Conjecture. Let a compact aspherical manifold V be fibered over the circle.
Then the group I' = x,(V) has h*(I') = 0 for all £ =0, 1,....

Interesting examples where this is unknown are provided by ramified coverings
of the 5-torus many of which fiber over S and have x; hyperbolic.

8.A;. Examples of computation of A¥(I). (1) If h*(T) = 0 for all k
but k = ko, then A% (I') = £x(T). Thus one computes h* for (compact and
non-compact) lattices in the semisimple Lie groups.

(2) Underlattices. Let T be a hyperbolic factor group of a hyperbolic lattice

I Then I' acts on a locally symmetric manifold (or orbifold, if we allow
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torsion), X (covering V with my(V) = T). If X is modelled on H2* (or
Hg") and if the canonical Kahler form of degree 2 (or 4 if we live over H)
is exact, then the hyperbolicity of T implies that this form is d(bounded)
and so L;H*(X) = 0 unless k = n (or k = 2n for X modelled by Hg).
Furthermore, assume that the group x,(X), which equals the kernel of the
homomorphism I' — T, is freely normally generated by the fundamental
group of a closed totally geodesic submanifold W in the (compact locally
symmetric) manifold V presenting I' as 7;(V) (e.g. ker = 7,(X) is normally
generated in (V) D x,(X) by a single closed geodesic in V), such that the
restriction of every closed Ly-form on X to each lift of W to X is exact on
W. (This is automatic for dimW < } dim V.) Then

RYTY = B*-Y(W), for k < %dimX,

and :
R5(T) = (—1)*x(V) + ¥ Y(W), for k= 5 dim X,

where b1 denote the real Betti numbers of W for k > 2 with the convention
b~! = §° = 0. (This follows by the L,-Mayer-Vietoris theorem, see [Cb-Gr]s.)

Now, let us concentrate on the (compler hyperbolic) case where W is a to-
tally real oriented submanifold in V having all connected components of di-
mension n. Then if n is even, the lifts of the components of W to X are
independent in the n-dimensional L;-homology of X, since each component
of W has non-zero self-intersection number (equal to x(W)). It follows, that
x(V) = A(T) = (W) (= the number v of the components of W). (This
can be improved with the Hodge decomposition in X and/or the L-signature
theorem.) Furthermore,

B*(T) = x(V) —v + 5 (W)

(where B""1(W) = b(W) by the Poincaré duality. Notice that v does not
appear in the previous formula for h*="(T'), since the lift of W to X thereis
assumed Lj-homologous to zero.).

Questions. (a) What happens for n odd?

(b) Let V be a compact locally symmetric space modelled on HZ", n > 2,
and W a submanifold (without double points) modelled on HE C HZ". Is
there a universal bound

Vol W < const, Vol V?

(One knows there is some bound Vol W < (Vol V) which follows from the
affirmative solution by Marina Ratper of the Ragunathan-Margulis conjec-
ture.)
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(3) Amalgamated products. A variety of examples with computable £; H” is
exhibited in {Ch-Gr]s and [Gr)ys. For instance, one can realize an arbitrary
constructive sequence of real numbers 8;, i = 1, 2,..., with 8, and f; rational,
by ki(T) for some finitely presented group T'. (One does not know if ! and/or
h? are necessarily rational for finitely presented groups I'.)

A general useful relation for h'(T'), where ' =T, : I3, reads
2

3

R'(T) E Y (R(T3) — BY(T3)).

For example, if card(T',/T3) > 2 and card(T'3/T;2) > 3, then A'(T") # 0. (This
can be also seen geometrically by looking at the ends of T, see 7.C,.)

8.A;. ILj-cohomology of residually finite groups. Let I, D I'; O ...
be a descending sequence of normal subgroups in T of finite index such that

ﬁ = {id}. Then the ordinary real Betti numbers b* of T; give a lower bound
=1

for h*(T) by the following inequality essentially due to Kazhdan (see [Kaz]s,
[Ch-Gr]z;;)
R¥(T") > limsup b%(I';)/ card(T/T). (%)

Question. Does the equality hold, A*(T") = lim b%(I';)/ card(I’/T;)?

The inequality (%) becomes more transparent if I' = x(V) where V is a
compact manifold and T; = [/I; appcar as the Galois groups of regular
coverings V, = V. Then the L,-cohomology of the limit covering space Voo

acted upon by T, =T/ ﬂ T satisfies
=1

h*(V,, : T ) = dimg L 2H* (Vi)
>hmsup dimg, L,H KV) = RE(V, : T). (»*)

Notice that (#+) makes sense and is valid for an arbitrary descending se-
quence of normal subgroups, possibly of infinite index, and that if I'; is finite
then L, H* (V;) = H*(Vi;R) and dimg, Ly H*(V;) = dim H*(V;)/ card Ti. The
formula (#%) suggests that there is a certain convergence of Hilbert spaces
LHY(V;) to LH*(V,,), which indeed there is as explained in [Ch-Gr]as.

8.A,. Several open questions concerning I,-cohomology. Let " dis-
cretely and cocompactly act on a contractible polyhedron X. We already
know that vanishing or non-vanishing of h*(T") = A*(X : T) is a quasi-isometry
invariant of ' (and X). On the other hand, h* itself is not such an invariant.
For example, if I C I is a subgroup of finite index d then h*(I) = di*(T').
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Is the ratio h*(T')/hY(T) a quasi-isometry invariant for all k and 7

There is a closely related question which does not directly involve L3-coho-
mology and which applies to the case where X is a contractible manifold and
the action is cocompact and free. In this case there are two basic numerical
invariants of the manifold V = X/T: the Euler characteristic x(V) and the
signature o(V') (which is defined if dim V = 4m and which has an L;-meaning
on X by the Atiyah L,-signature theorem).

Is the ratio o(V)/x(V) a quasi-isometry invariant of T'? Is the sign of x(V)
(or at least, vanishing versus nonvanishing of x(V)) a quasi-isometry invari-
ant? Do the following tmplications hold

IVI=0 = x(V)=0 = o(V)=0? (+)

(Where ||V]| denotes the simplicial volume of V, i.e. the simplicial £;-norm
of the fundamental homology class of V, see [Gro]s.)

In fact, in all available examples,
IVIl=0 = LH'(X)=0,

but one does not know if this is a general rule. Also, one may expect a quan-
titative version of (+), i.e. |o(V)| < x(V) for 4-dimensional aspherical mani-
folds V (this would follow from tbe vanishing of L, H*(X) for k # 1 dim X)
and |x(V)| < const, ||V]|.

Our final geometric question is related to the old conjecture claiming the
vanishing of x(V) for compact affine flat manifolds.

Does the Ly-cohomology of the universal covering of a compact affine manifold
vanish?

This is not even known for complete affine manifolds where the vanishing of
x(V) is proved by Kostant and Sullivan.

Comments on the quasi-isometry questions. The basic examples of non-
commensurable quasi-isometric groups are provided by cocompact lattices
[ in a fixed locally compact group G. One knows that any two such lattices,
say I') and I'; in G, have proportional L;-Betti numbers. In fact, this remains
valid if one (or both) of T;,t = 1, 2 is non-cocompact and so [} may be not
even quasi-isometric to I';. Another interesting example due to Gersten of
quasi-isometric T') and I'; is where I’} is a non-trivial central extension of a
hyperbolic group and I'; the trivial extension, e.g. T’y equals the fundamental
group of the unit tangent bundle of a closed surface § while I'; = x,(S) x Z.
However, both I'; and I'; here have zero £,-Betti numbers and so this is a not
a very convincing illustration of L,-ideas.
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Finally, let T, be the free product of the free group on m generators with an
infinite group T, i.e. 'y = F,, #To. Here A!(T,,) = m+ h}(T,) and *(T'n) =
k*(To) for k > 2. What is unknown is whether I, is quasi-isometric to T,
for n > m > 2. (The quasi-isometry between I, and T, would immediately
follow if we knew that F,, and F, were bi-Lipschitz equivalent.) One can
make up similar “almost counter-examples” with free products amalgamated
over finite subgroups of different orders and so it seems unlikely that A*¥/h¢ is
a quasi-isometry invariant without some extra “irreducibility” assumption on
the groups in question. Unfortunately, such an assumption may eventually
imply that Tand T'; are cocompact in some ambieat G which would make
the quasi-isometry conjectures look silly.

Recall that the success of the definition of h* is due to tbe possibility to sum
(or integrate) I'-invariant functions on certain I-spaces £ where T acts with
finitely many orbits (or, at least, with finite covolume). The true question
behind the quasi-isometry invariance problem for A* /¢ is that of classification
of possible summations over L where I'-invariance is replaced by a weakest
possible condition. Let us give an example to explain what we want to say.

Integration over foliations. To simplify the terminology we switch from &
to (Riemannian) manifolds X. Then we take a foliation X whose leaves are
Riemannian manifolds and let X' carry an ergodic transversal measure. Now,
we can integrate functions over A’ and this integration can be thought of as
an averaging (or summation) over a generic leaf X of X' (this I learnt from
A. Connes). In fact, the L;-cohomology theory was extended by Connes to
the foliated framework, which can be used to prove the following invariance
of k*/h? under measurable quasi-isometries between groups.

Definition. We say that I';-spaces X;, ¢ = 1, 2 are mutually measurahly
quasi-isometric if therc exist finite measure spaces Y; with measure prescrving
[;-actions and a measurable bijection

X]X“HXzX‘/g,

such that

(a) for almost all y € ¥, the leaf X, x y quasi-isometrically goes to some leafl
X,: x y' € X3 x Y, and the resulting correspondence between Y) and Y; is an
isomorphism between these measure spaces.

(b) Almost every I'y-orbit in X, x Y; for the diagonal action of I'y on X, x Y3
goes to a [z-orbit in X3 % ¥;. (Notice that this is possible only if the actions
of ['; on ¥; are mutually orbit equivalent.)

Claim. Let T;, i = 1,2 act isometrically, discretely and cocompactly on
contractible manifolds X;. If X; (s measurably gquasi-isometric to X, then the
groups I'y and '3 have proportional £3-Betti numbers.
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Idea of the proof. By the above mentioned Connes’ L;-cohomology theory
one has well defined L;-Betti numbers of (X; x Y;)/I'; which satisfy

p BE(TL) = B4 (X0 x Y)/T1) = BH((X; x Y3)/T2) = pah™(T3)

where y; denotes the full measure of Y;.

Remarks. (a) An equivalent (and more intuitive) form of the above definition
consists of requiring the existence of a suitable measure on the space of quasi-
isometries X, « X3 invariant under the natural actions of ') and I';.

(b) The above claim generalizes what we already know for cocompact lattices
in G but does not quite cover the case of non-cocompact lattices.

Computability and rationality. Let I' act discretely and cocompactly on a
locally finite polyhedron X. Are the {;-Betti numbers A*(X : I') effectively
computable in a suitable sense? Are they necessarily rational (or at least con-
structive) numbers? (Rationality is an old question going back to Atiyah.)
Are there, at least, effective criteria for vanishing, non-vanishing and local-
izing k* in a given interval? Can, for example, the £2-Betti numbers of a
hyperbolic group T be effectively computed in terms of a Markov structure
on I'?

Let us give a more specific form to the computability question. Suppose,
for every R, there is a harmonic k-cochain a = a(R) on the R-ball in X
around a fixed point which has the value at a central simplex equal one and
whose £3-norm is bounded by a fixed constant C independent of R. Then, as
R — oo, these cochains a(R) subconverge to a non-zero harmonic £;-cochain
on X thus making A* # 0. The question is whether the existence of a(Hy)
for some large but effectively coniputable Hy = Ro(C) implies the existence
of a(R) for all R.

Notice that there is a partial effectiveness for bounding h*. Namely, if we find
an Ry, such that every harmonic k-cochain on B(Ry) satisfies |a(a)| < €||a]|,
for all simplices ¢ at (i.e. adjacent to) the center of the ball, then we conclude
that h¥(X : T) < Ce for some explicit constant C > 0. (Unfortunately, we
do not know, a priori, how large Ry should be to insure a given ¢.)

4;-Betti numbers for generic groups I'. Suppose T is given by p > 2 generators
and q relations. Generically, if the lengths of the relations are sufficiently
large, compared to g, this is a hyperbolic (and sometimes small cancellation)
group. In particular, there are only two non-zero numbers A'(I') and A?(T).
These satisfy h2 — h' = ¢—p+ 1 as well as ' < p and A% < ¢q. That is
all we know. Also it seems not impossible that A! = 0 if g is significantly
bigger than p and, conversely, h% = 0 if p is significantly bigger than ¢q. (Here
one would feel safer by restricting to rclations of controlled length.) But the
intermediate domain looks quite dark. For example, may one have both A'(T)
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and h3(T) non-zero for a generic ['? Are there generic groups with both Al
and h? zero? (These should have p= ¢ +1.)

To be specific let T' be given by two generators and one relation. We have
already mentioned the problem of finding a single such T with k! # 0. On
the other hand, the only groups I" where h! = 0 is ensured are those of the
form (a,b | a® = a'), as they are solvable. The groups (g, b | (a')* = a') are
also likely to have h! = 0, but for generic I we conjecture h! # 0.

We conclude with several non-generic questions about Z;H .
Let1 » Ty, - T = T; =1, where Iy and I'; are infinite groups of finite type

(e.g- fundamental groups of finite aspherical polyhedra). Is ml(l‘) =0?
(We have stated this problem earlier for I'; = Z.)

Let IV be obtained from I by adding a single relation. Is the £,-Betti number
h'(I") bounded from below by A*(I¥) > A*(T) — 17 Let

T=(m, 0w | (M) =1...,(r)" =1)

where each d;, j = 1,...,s, is of the form d; = p* for a fixed prime p. Is
R(T)>r—1— % d;'? (This is so in the generic case.)
1=1

8.A;. Spectral density near zero and {;-acyclicity. The reduced £;-
cohomology is a chain homotopy invariant of a complex of £;-cochains in
the category of Hilbert spaces and bounded operators but this is not the
only invariant. For example, one may have a (sbort) complex 0 — R*® e
R> — 0 where § has dense image without being onto, say, by mapping each
vector (Zy, Tz ..., Tiy...) to (A1Z1, A2Za, ..., AiZi,...) where \; are non-zero
numbers converging to zero. Here the rate of convergence A; — 0 serves
as a chain homotopy invariant of the above complex. (This “numerical”
information may be, probably, encoded in the non-reduced cohomology, which
is the quotient R*®/Im d in this case, as was suggested by P. Pansu.)

Now, take an arbitrary complex of Hilbert spaces

0-C"=C' 5., = C" >0,
L dy dney

lt A=A¢BAD...0A,:C - C, for (C,d) =@ (C',d;), be the Laplace

operator, A = dd* + d*d and observe that the following 6} conditions are
equivalent.

(1) C is acyclic, i.e. the non-reduced homology, i.e. Kerd/Imd, is zero.

(2) A is invertible by a bounded operator.
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(3) The spectrum of A does not contain zero. Recall that spec A, by def-
inition, is the subset in C consisting of those z for which A — z is not
invertible by a bounded operator. Thus spec A is a closed subset and
since A is a symmetric operator its spectrum lies in R. For example, the
spectrum of A for the above short complex equals {1, A2,...A2,...,0}.

(4) The complex (C, d) is contractible in the category of Hilbert spaces and
bounded operators. This means there exists a bounded (homotopy) op-
erator h =@ h; : C — C for h; : C; — C;_;, such that hd + dk = Id.

(5) There exists a constant A > 0, such that every £;-cochain c satisfies
lell,, < Alidell,, + lld*cll,,) (Where d* denotes throughout this section

the adjoint operator).

(5") There exists a constant X', such that every £;-cochain c satisfies ||c||, <
X llac ’
&

(6) There exists a constant u, such that every d-closed cochain ¢ (i.e. ¢ €
Ker d} is of the form db, where ||b]|,, < ||,

Definition. A simplicial polyhedron X is called £;-acyclic if the associated
complex of £3-cochains is acyclic, i.e. satisfies (one of the) above conditions

(1) - (6).
Question. Do (non-empty) £;-acyclic polyhedra exist?

Probably, if we do not insist on dim X < oo or on X being uniformly locally
finite (i.e. at most k neighbours for each simplex) such £-acyclic X may
be easily constructable. (Notice that if the i-skeleton of X is not uniformly
locally finite, then the operator § may be unbounded on (i — 1)-cochains and
the above discussion needs to be made more precise.) But £;-acyclic X may
exist even with these precautions. In fact, I see no reason why there would
not exist a 2-dimensional (uniformly) locally finite £;-acyclic polyhedron X.
Yet 1-dimensional £;-acyclic polyhedra X do not exist. To sce this we observe
that for every X of dimension n the ordinary n-dimensional homology inject
into n-dimensional £;-homology which is dual to £;-cohomology. Thus, if X
is £3-acyclic, then H,(X;R) = 0. In particular, if n = 1, then X must be a
tree. Now, if Ay is invertible (on £,C?), i.e. if ¢ < Mgy for all 0-chains, then
X satisfies the (top dimensional) linear isoperimetric inequality for bounded
subsets in X and therefore, there exists a number a, such that for every
segment [z,,z3] in X of length > a there is an infinite sub-subtree in X
growing from an interior point z in [z, z,] which meets [z), 2] at no point
besides z as in Fig. 21.

It follows that X contains a quasi-isometric copy of an infinite regular tnadlc
tree Treez which, as we know, supports a non-zero £,-cycle. This makes lgH

non-zero. (Apparently the implication
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Fig. 21

Ay is invertible = X contains a quasi-isometric copy of Tree;
is valid for all polyhedra X of dimension > 1.)
The {;-acyclicity question seems especially interesting in the following two
cases.

(A) The polyhedron X is uniformly contractible (i.e. there exists a function
R(r) such that every r-ball in X is contractible inside the concentric
R(r)-ball).

(B) The polyhedron X admits a discrete cocompact action of a group I' by
simplicial automorphisms of X.

In fact, in the situation (4) N (B), the £;-acyclicity becomes a property of [’
independent of a particular contractible polyhedron where T acts.
Lj-acyelicity. If X is a smooth Riemannian manifold one has the Laplace—de
Rham operator A on the space of differential forms, denoted L,0* = EB

LY, and then X is called L,-acyclic if the spectrum of A contams no
zero. If X has uniformly locally bounded geometry, it can be triangulated
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into simplices uniformly bi-Lipschitz equivalent to standard unit simplices
A" C R, i =0, 1,...,n, and then, as we already know, the complexes
(L20*, dexterior) and (£2C°, deombinatoriat) are naturally chain homotopy equiv-
alent in the category of Hilbert spaces and bounded operators. (Notice, the
exterior differential d as well as the Laplace-de Rham operator dd® + d*d are
unbounded but this causes no problem.) Thus

Li—acycliaty = {;—acyclicity.

Conjecture. Let X be a contractible Riemannian manifold without boundary
which admits a cocompact isometric action of a group I'. Then X is not
Lj-acyclic.

Motivation. It is explained in [Gro];3 that both properties of X, contracti-
bility + the existence of a cocompact T'-action and the L,-acyclicity indicate
that X is large in a certain unspecified geometric sense. For example, many (if
not all) known contractible I'-manifolds X are hyper-Euclidean which means
the existence of a proper Lipschitz map X — R", n = dim X. (This may
be true for all contractible I'-manifolds.) Then it was pointed out in [Gro)y;
that hyper-Euclidean manifolds cannot be Lj-acyclic for the reason which we
explain here for n even. In this case R" supports a non-trivial element of K°
with compact support represented by some complex vector bundle F on R®
with a fixed trivialization at infinity. We equip this bundle with a Riemannian
connection and then we pull back F to X by the composition @, of a given
Lipschitz map ¢ : X — R" and a scaling of R given by y +— ¢y for a small
€ > 0. We assume without loss of generality that ¢ is smooth and then the
induced bundle @;(F) on X has e-flat connection. Now comes the key point:
the introduction of ¢ (F) brings along non-trivial topology which forces the
signature operator on X, twisted with ¢} (F) (or some multiple of this bun-
dle) to become non-zero (see [Gr-Law] where this is done for the generalized
Dirac operator). On the other hand, as is pointed out in [Va- Wi, the twisted
signature operator (Vafa and Witten work in [Va-Wi] with the Dirac on a
compact manifold but their argument is quite general) can be viewed as an
e-perturbation of the ordinary signature operator whose spectrum is bounded
from below by a positive A if X is L;-acyclic. Then the &-perturbation, for €
small compared to ), also has spectrum away from zero which is incompati-
ble with the non-vanishing of the index. (See [Roe},_q, [Hur]y2, {Gro]zo and
[C-G-M|,.2 for more about this kind of reasoning.)

Remarks. (a) Homologization. The contractibility of X is not indispens-
able. The important thing is non-vanishing of the natural homomorphism
H,(X/T') — H,(T;R),n = dim X (where the action is assumed orientation-
preserving). In fact, starting from this point one can develop a cohomology
theory based on hyper-Euclidean ideas (see {C-G-M];).
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(b) Lipschitz families. There is a variety of generalizations of the “hyper-
Euclidean” condition which amount to bringing-in families of (Lipschitz)
maps X — R¥, N > dimX. For example, one has a suitable family (for
A to be non-invertible) whenever X admits a uniform Lipschitz embedding
into some simply connected manifold ¥ of non-positive curvature (compare
[Gr-Law], [C-G-M],).

(c) Blow-up of boundaries. If X is a manifold with boundary there is a
patural (blown up) manifold X* = X U8X x [0,1] for 8X identified with
dX x 0 and where X x [0,00) is given the metric e'gy + dt? for the original
metric go in X. Now the notion of Li-acyclicity may be applied to Xt.
For example, if V;, is an aspherical polyhedron, it can be first thickened to
a manifold V with boundary and then the +-construction applies to the
universal covering X of V. In this case the Lj-acyclicity of X* is, in fact, a
property of the fundamental group I' = (1), as a simple argument shows.
(It is sometimes useful to try more sophisticated “blow-ups”. For example,
given X without boundary, take first a suitable complexification Y of X
with pseudoconvex boundary, and then take Y with Bergman metric for Y'*.
The Kahler geometry of such Y* may provide you with non-trivial spectral
information, see [Gro)z.)

(d) Dirac and Dolbeault. The notion of L,-acyclicity generalizes to other nat-
ural elliptic complexes, such as the Dolbeault complex and the Dirac operator.
The Dolbeault complex very rarely is L,-acyclic (see [Gro]zo) but Dirac may
have spectrum away from zero. In fact, this is the case for manifolds X of
strictly positive scalar curvature (see [Gr-Law] for all about it).

(e) Lip-deg order. The above discussion suggests the following order relation

between complete oriented Riemanrian manifolds without boundary of a fixed

dimension n, X E Y & 3 a proper Lipschitz map X — Y of degree 1. More
P

generally, we write X > dY if there is such a map of degree d. This relation

L
is hopelessly complicatel:l in the category of all Riemannian manifolds but it
may be reasonable for the universal coverings of compact aspherical manifolds,
where it can be attributed to the fundamental groups of these manifolds. The
first unsolved problem is to decide whether every such universal covering X
satisfies X 12 R" (as was already stated in the hyper-Euclidean language).
ip
(¢') A*-order. Generalize the above by writing X 2. Y if there exists a smooth
A

proper map ¢ : X — Y of degree one such that || A*o||(z) < const < oo for all

z € X, where A¥p : A*T(X) — A*T(Y') denotes the k-th exterior power of the

differential of ¢. (Notice that the relation X > Y is equivalent to X > V)
sl

Lip
This A*-comparison (as in the case Lip=A!) is especially interesting for the
infinite (e.g. universal) coverings of closed (e.g. aspherical) manifolds though
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a purely group theoretic reformulation seems harder for k£ > 2. (Notice that
the case k = n = dim X reduces to a comparison of the volumes of (the ends
of) X and Y and does not appear useful from our point of view.) The most
prominent among the A*-relations is the one with k = 2 as AZ-contracting
maps allow pull-backs of almost flat vector bundles. (See [Gr-Law} where the
emphasis is laid upon A%-contracting maps X — R" and the existence of
these is called A?-enlargability of X.)

(f) There is another purely topological order on the set of all closed ori-
ented manifolds of a fixed dimension n, where V > W signifies the exis-
tence of a continuous map V — W of degree one and V > dW refers to
a map of degree d. This order is detected by the simplicial volume ||V]| as
V > dW = ||V| = |d]||W]| and the question arises to classify all such mono-
tone invariants of manifolds. This appears impossibly difficult unless one
imposes some extra conditions on such invariants similar to those satisfied
by the simplicial volume. Recall that an essential property of the simplicial
volume is a certain continuity which is best expressed by extending (following
A. Connes) ||V]| from closed manifolds V to foliations with transversal mea-
sures. Such foliations generalize groups (such as my(V)), where actual groups
correspond to closed leaves, (and if closed leaves are dense then all leaves
appear in the closure of the space of groups, while the foliation itself, as an
object of a mecasure theoretic thickening of the category of groups, may be
also thought of in this case as a limit of groups). Then one tries to determine
the space of all “continuous” monotone maps from the “spaces of manifolds”
to R4 (where one may postulate or derive from continuity other properties of
such invariants mimicking those of V ~ ||V]| such as the dependence on the
group I' = xy (V) only).

8.A,. Von Neumann spectral measure near zero. Let X be, as earlier,
a uniformly locally finite polyhedron and recall that by the spectral theorem
the Laplace operator A on i-cochains is canonically isomorphic to the multi-
plication operator by t on [0, 00) on the Lj-space of functions f(¢), ¢ € [0,00)
for some measure s = pa on [0, 00). We denote by HY C £;C* the subspace of
i-cochains in £? corresponding to the finctions f(¢) vanishing outside the seg-
ment [0, A] and let Pf be the normal (spectral) projection of £,C* to H. Now
we assume there is a group T cocompactly acting on X, define the number
h¥ by
h% = tracer P¥(= dimr HY).

This number, for a fixed A, does depend on a particular triangulation of X
but the asymptotic behaviour of A% for A — 0 is a homotopy invariant of the
T-space X. (See [Nov-Sh)yz, [Gr-Sh]y s, [Efr].) In fact, for many interesting
examples h¥ ~ A~ and then the asymptotics is expressed by the number a
which carries a non-trivial homotopy theoretic information about (X,T).
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Remarks. (a) Notice that k% equals the £;-Betti number A*(X : I'). When this
is non-zero, the new homotopy theoretic information lies in the asymptotics

of h¥ — kg as this approaches zero.

(b) Unlike the ¢;-Betti numbers the asymptotics of h% for A — 0 may be
quasi-isometry invariant for contractible polyhedra X. In fact, one can slightly
change the definition of A% which makes it “I-free” as follows. The operator
P¥ is given by a certain kernel I1¥(o, ¢’) (compare with the definition of A* in
8.A) and trace T is obtained by summing I15(c, ) over B/I'. Now, we forget
about I and define

71: =sup H:(a, o),

for @ running over all k-simplices ¢ in X. Since Il5(0,a) > 0 (as A is a
positive operator),
h’; > 71’; > const h';,

where const equals 1/(number of I-orbits of k-simplices in X). Thus, we do
not change the asymptotics by switching from h% to h%. (If we work with
a Riemannian manifold, then A% should be defined by averaging I1%(z,z)
over a ball in X.) Now, suppose we have a Lipschitz homotopy equivalence
between X and Y which is given by a pair of uniformly proper simplicial
maps f: X —- Y and ¢: Y — X, such that both composed maps fg and ¢f
are Lipschitz homotopic to the identities X — X and Y — Y according to
the following definition.

Two Lipschitz (e.g. simplicial) maps A — B are Lipschitz homotopic if there
exists a homotopy by a Lipschitz map A x (0,1} — B for the obvious metric in
the product A x [0, 1]. (Notice, that every quasi-isometry between uniformly
contractible spaces with uniformly bounded local geometries can be modi-
fied into a Lipschitz homotopy equivalence.) Such a homotopy equivalence
induces a very special chain homotopy equivalence between the ¢;-cochain
complexes of X and Y as every Lipschitz homotopy induces a chain homo-
topy in the algebra of operators induced by self-homotopies of the pertinent
spaces moving all points by uniformly bounded distance. Then it seems to
follow (I did not check it 100 %) that the numbers h(X) and k(Y are
related by

h5(X) < Ch3(Y) (%)

for X = C,, where C is a constant depending on the Lipschitz constants of
our maps and homotopics, and conversely

A(Y) < CRY(X). (+2)

(The inequalities (*) and (*+) express exactly what we mean under the equiv-
alence of the asymptotics of h%(X) and A%(Y) for A — 0.)
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Warning. The above (#) and (+*) do not hold true unless X and Y are quasi-
periodic in a suitable sense. (Having cocompact simplicial isometry groups
is more than sufficient for the needed quasi-periodicity. On the other hand,
one can refine the definition of A% which would take care of non-quasiperiodic
spaces. )

{,-Variation. Let us indicate another possibility of varying h* = h . This
time we suppose h* = 0 and we want to define some kind of £,-Betti number
for p — 2. Here are several options.
(1) For each k-dimensional simplex & let ¢, denote the unit cochain supported
on a (i.e. (o) = | and ¢(0*) = 0 for ¢’ # +0) and let §(0) and D(e) denote
the £, distances from ¢, to the subspaces Kerd, and Imd,_, respectively.
Notice that D(a) > §(o) as Kerd;, D Imd,_, and that these distances do
not depend on the orientation of o. Then we set tr(a) = D*(a) — 6*(o) and
define hf’ as in 8.A. by summing up over the I'-orbits & of k-simplices o,
ht = L (cardT5)™' te(7). Alternatively, we could take
oES)
k

. =sup tr(a).
4 oES)

(2) Consider all p-harmonic cochains ¢ on X and set
ke, =sup llell, / llell,,

It is clear kb — 0 for p — 2 (as we assume h, = 0) and this also seems plausi-
ble (and easy to show) for h} and A . Furthermore, the asymptotic behavior
of these three numbers for p — 2, probably is a [-homotopy invariant and
even a quasi-isometry invariant under favourable circumstances.

Remarks. (a) The above “f;-Betti numbers” represent just an attempt to
work out a good definition. It is unlikely that these are full fledged £,-Betti
numbers for all p, but these may exist for p infinitely close to 2.

(b) There is another approach to the £,-spectral density near zero via non-
linear spectra discussed in [Gro),7. For example, given a tower of finite s;-
sheeted (Galois) coverings V; of a fixed compact polyhedron V one may define,
for each A > 0, the “/-spectral dimension below A”, denoted dimy(V;; k, A) in
each degree k. (This can be done in a variety of ways using the function
¢ = |ldegll,, / llell,, on the projectivized space ® = £,C* [ lndy-y, see
[Gro]i7.) Then the asymptotics of dim,,(f’.v;k,,\) fori = ooand A —» 0
(relative to s;) carries interesting (?) information on V;, i — oo, and on the
infinite covering X =.1_|.rg Vi of V. (In the case p = 2 this boils down to A%
of X.) It is less clear, however, how one should define the non-linear spectral
dimensions in the infinite dimensional framework where there is no preferred
approximation of X by finite polyhedra.
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8.B. More on vanishing and non-vanishing of L,-cohomology. We
continue the discussion on vanishing and non-vanishing of L,-cohomology
with a closer look at maps with p-summable gradients (compare () at the
beginning of §8). We denote, as earlier, by ||AX||(z) fora C'-mapp: X - Y,
the norm of k-th exterior power of the differential dy of ¢ on 7(X) (thus,
[| A! @]l = lldell) and we wish to understand the overall effect on ¢ of the
condition k[ n/\ktp (z)dz < oo. For example, we ask when there is such a

map ¢ of X on R", n = dim X, which is proper and bas non-zero degree or
a map into R" with summable Jacobian, i.e. [||Ay||(z)dz < oo and with

geometric degree [ A"p(z)dz £ 0. We also want to study naps ¢ from X
x

to RY (where N # n and where we are particularly interested in embeddings

X — RN for N > n) and tbe size of their limit sets. More generally, we may

require fﬂ/\"‘gp“" < oo for several values 0 < k) < k3 < ...k, <n =dimX

and study the space of @'s satisfying these inequalities.

Ezamples. (a) Let the exponential map exp : Ty (X) — X be bijective. Then
the inverse map
v =(exp)': X = T,y (X) =R"

is a homeomorphism and if the curvature of X is pinched between —(1 + ¢)?
and —1, then, clearly,

j||/\*¢||” < oo, for p(k=1)> (h=1)(14+¢).

(a") Suppose K(X) < 0, let —R? denote the lower bound on the Ricci cur-
vature and —R2 the upper bound of the Ricci curvatures on k-dimensional
subspaces 7' C T(X) (see 7.C,). Then

/"A"gp“r < oo for pRs> R.

For example, let X be the Cartesian product of two spaces of constant cur-
vature, X = Hg' x Hg*. Then Ry > 0 for n — k < m = min(n,,n;) — 1
(where ny + nz = n = dimX). In fact, constant curvature —1 makes
Ry =m—(n—k) for n—k <m, while R=n, +n, - 2.

(b) Look at the normal projection ¢ of X onto a unit ball in B C X (instead
of exp~!). Here

/"A""” <oo if pk > (n—1)(1+¢)orif pRus: > R,

and now ¢ has summable Jacobian and non-zero geometric degree.

(b’) Let X be a symmetric space of rank kg or the Cartesian product of ko
manifolds with K < —1. Then we modify the above y to another monotone
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radial map, say ¢’ : X — B sending each geodesic ray r C X issuing from
the center 7o € B, into itself snch that |r is a monotone map (for r = Ry)
which is constant outside a small conical neighbourhood Xy C X of a regular
ray ro C X and ¢’ equals  in a smaller conical neighbourhood X, C X,. In
fact, such a modification can be achieved by composing  with an appropriate
smooth radial map B — B. This ¢’ still has summable Jacobian and positive
geometric degree. What we gain, is p-summability of || A¥ /|| for all & > ko =
rank X, and sufficiently large p = p(X, k). For example, if X = Hg' x Hp?,
then r
/“Akvrﬂ’ < oo for g——\/Tl)-E >n+n; -2,

where we take a diagonal ray for ry (i.e. whose projections to both factors are
exactly (1/v2)-Lipschitz) and where the size of X, D ro may depend on p
(i-e. closer p is to (n) + nz — 2)3?, smaller X, should be).

Remark. We have seen at the beginning of §8 that maps ¢ : X — R"
may provide non-trivial reduced L,-cohomology. Namely, if ¢ has summable
Jacobian, non-zero geometric degree and

/"A"w"’ < oo and /u/\""‘u' < 00

for n = dim X and 1 + ! =1, then LH"(X) # 0 and also LA™ ™*(X) # 0.
For example, if X is (1 + £)2-pinched, then we see with (b) that mk #0
provided ¢ < -%; and Zn——l)k(_lm > i‘ > 1—(—"'_".)—({*7)' But for ¢ > -1
the above discussion does not yield any non-vamshing information about L,
cohomology, though it delivers pairs of closed forms, say w of degree * and w
of degree n —k, such that w € L, o' € L, where wAw’ € L, and xfwAw’ #£0,

i

g

~

but the equality ! + % = 1 (or even the inequality lr + % < 1) may be not
valid anymore. Tfle existence of such pairs (w, ') for given k, p and g, is
a quasi-1sometry invariant property of X which, probably, can be adequately
expressed in terms of (non-vanishing of) the L, ,-cohomology (for p’ = 1~ %)
introduced in [Pan]s. On the other hand one may believe that for every
positive k < dim X there is some p = p( X, d), such that W(X) # 0, where
X is a complete simply connected manifold with pinched negative curvature.
Furthermore, for certain k (most likely k = n/2 or k = %) the number
p can be, probably, taken arbitrarily close to 2. (For n even one may even
conjecture the non-vanishing T, 11"/3(X).)

What is known in this regard is the non-vanishing of T, H' (X) for sufficiently
large p (see [Panjs and (d) at the beginning of §8). This implies, by the
Poincaré duality, non-vanishing of W—l(X) for ¢ = 1 + & for sufficiently
small § > 0.
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Remark on Poincaré duality. Exterior multiplication of forms establishes a
duality between I H (X) and L H “*(X) for } +;=landl<p g<oo
on every smooth manifold X and this yields the Poincaré isomorphism

LU (X) 2 TH ™ (X).

In fact, the usual proof of the Poincaré duality on (polyhedral) homology
manifolds applies to non-reduced (co)homology and shows that

LH(X) R L H*(X).

Bounds on maps with p-summable gradients. We start with a simple bound
on the (n — 1)-volume, n = dim X, of the limit set of ¢ : X — Y, denoted
inf Vol,.—y 8p(X) which by definition is the infimal number V, such that for
every increasing system of compact domains X; C X3 C ... C X exhausting
X we bave liglﬂigf Vol._y p(8X;) 2 V.

Observation. If X is a geodesically complete manifold and ¢ : X — Y has
S1IA"Y ]| < oo, then inf Vol,_y dp(X) = 0. Consequently, if [ [A*o|” < oo
for some k < n— 1 and p = %L, then again inf Vol,_, dp(X) = 0. Fur-
thermore, ¢f X has uniformly bounded local geometry then the latter remains
valid with p > 271,

The proof is immediate with concentric balls in X taken for X.

Remark. If dimY = dim X = n and ¢ has summable Jacobian and

inf Vol,_, @¢(X) = 0, then p has zero geometric degree, i.e. for every bounded

n-form w on Y, the pull-back p*(w) on X satisfies [ p*(w) = 0. In general, if
X

f"/\"gp”’ < oo then bounded k-forms on Y go to p-summable forms on X and

so ore can define the subspace, in mk(X) coming from the pull-backs of
closed bounded forms in Y. We denote this by }_(Leo/*(Y)) C LH (X),
though the homomorphism * : L, HY(Y) — L, H*(X) is not defined, unless
f"A*"tp"P < 0o as well as flA"gp”P < oo.

Ezample. Let o : X — R* have ;("/\""gp"p + "/\"gp"’) dz < 0o. Then

1, (Lo H* (R*)) = 0.

Proof. Let y; be a standard cut-off function with the support equal to the
i-ball B(i) C R* and w; = puw for a given bounded form w on R*. Then
" (wi) —L-: ¢*(w) while each w; is cohomologous to zero in Lo, H*(R*). Q.E.D.

This example is closely related to the following
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Vanishing of the cup-product. Observe that the exterior product of forms (as
well as v-product of cochains) induces the product on cokomology L, H ' ®
LA™ LT H for ! = 14+, and if X has uniformly bounded geometry (or

is a uniformly locally finite polyhedron) tben the product is defined whenever

1l L L
»—mn ' pm

Observation. If the ordinary cohomology H'(X;R) vanishes, then the prod-

uct pasring
LA' LA LA™

vanishes for all k and p < oo.

Proof (compare [Grojz). Every exact £,-form w; of degree 1 can be ¢,
approximated by the differentials df; where f; are bounded functions on X,
since the (universal) form dt on R admits such approximation and w;, be-
ing exact, is induced from dt by a function f : X — R. Then wy Aw; is
approximated by the differentials of L,-forms, namely by d( fiwn). Q.E.D.

Remark. The above argument yields the vanishing of the product on EIT’" X
Z:H*’, whenever every closed p-form w; can be approximated by dJ; for
bounded (ky — 1)-form A;. This is the case, for example, for hyperbolic spaces
X and all k,. Furthermore, if X is semihyperbolic with (a suitable) rank ko
(e.g. a symmetric space of rank kg or the Cartesian product of kg hyperbolic
spaces) then every closed form w, of degree > ko + 1 is d(bounded).

Question. Does the v-product always vanish on L,-cohomology for 1 < p <
oo? This is not even known for p = 2 and X being a finitely presented group.

Von Neumann dimension for p # 2. As we bave lamented earlier there is no
(known) definition of £,-Betti numbers for p # 2, but the £,-structure may
be used via the cup-product. For example, one can take the von Neumann
dimension of the kernel of the product pairing L, H* Q@ L > — L H* as well
as the dimensions of the images of the pairings Ly, H* ® L, H* — L, H* for
given p; and p, satisfying ;lT +1>12

p — 2°
Question. Let an infinite covering X of a compact space V be approximated
by finite coverings V; — V (compare 8.A3). Is there any connection between
the above invariants and the asymptotics of the ordinary V-product in V; for
t — oo?

8.C. Some foundational problems concerning #,-cohomology. The
£,-cohomology is designed to measure non-acyclicity of the complex of £,
cochains and we start by indicating several notions of acyclicity.

(1) &-acyclicity, This means that there exists an £,-bounded operator A
(chain contraction) of our &,-complex {£,C*,d} of degree —1, i.e. h :
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C* — C*!, such that

dh+ hd=1d.
If this relation holds for i = 0,1...,k, we speak of acyclicity in degrees
0,...,k.

(2) Weak l,-acyclicity. This means, there exists a family of ¢,-bounded
operators he of degree —1, such that (k:d + dh¢)(c) &,-converges to c as
t — oo for every £,-cochain c.

(3) Vanishing of the non-reduced cohomology {,H* = Kerd/Imd.

(4) Vanishing of the reduced cohomology {,H = Kerd/Imd (where Imd
denotes the £,-closure of Imd).

It is obvious that

1 = (2
¢ 4
@ = @

but it is unclear when these implications can be reversed.

In order to have (3) = (1) we need the subspaces Imd; C £,C™! to be not
only closed but also to admit complementary subspaces, Im}* C £,C#. In
fact, k; can then be constructed as the composition of the projection to Imd;
(along Im;') with d;! (from Imd; to Im},).

Proposition. Suppose the images do(£,C®) C ¢,C° and dy(£,C°) C €,C° are
closed for some p, ¢ < 0o satisfying L+ =1. Then Imdy = do(£,C°) admits
a complement in £,C".

Proof. Let 8 = d* be the boundary operator on chains which is the adjoint of

d and let us identify chains with cochains in the obvious way. We claim that
Kerd C ¢,C" is a complementary subspace to Imd, = do(£,C?).

Lemma. If X is an infinite connected polyhedron then every harmonic 0-

cochain in &,, p < oo, vanishes, where “harmonic” refers to the equation

Ayp = 3dyp =0, p € £,C°.

Proof. Since p € £, it goes to zero at infinity and the maximum principle
applies.
Now, this lemma shows that KerdNlmdy = 0 in £,C" and in £,C' which

implies (by the duality between £,C* and £,C, = £,C*) that Ker @ and Imd,
span £,C"'. Q.E.D.
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Corollary. If X is an infinite connected polyhedron with Imdy closed in £,
and {,, then it is ¢, and £,-acyclic in degree zero.

Ezamples and applications. The image do(£,C°) C {,C" is closed if and only
if every 0-cochain ¢ € £, satisfies the Poincaré-Soborev inequality

llelle, < Alldell,, (*)e

for some constant A > 0 independent of y. This is obvious. It is also easy to
see that (x),, implies (+),, for every p > 1. In fact

[wisx fudel = [1w1<x, [l

by the Hdlder inequality. On the other hand, (*),, is equivalent to the linear
tsoperimetric inequality for finite subsets F, of vertices in the polyhedron X,
which reads

card F < A\, card @'F, (*)ie

where @ F C F denotes the subset of those z € F for which there exists an
edge [z, 2’} in X with =’ outside F. Ilere, the implication (), = (#);s follows
by applying (), to tbe characteristic function of F (or rather of F' — &F)
while (#),, for a function ¢ > 0 is obtained by (properly) integrating ()
for the levels ¥y = ¢~'[0,¢]. (This argument was discovered by Mazia and,
independently, by Cheeger many years ago.)

Now we recall that (+);, for discrete groups amounts to non-amenability and
80, if X admits a discrete cocompact automorphism group T, do(£,C°) C ,C°
admits a complement for all p in the interval 1 < p < 1, if and only if T s
non-amenable.

Another class of spaces (polyhedra) X satisfying all (x)s,, 1 < p < o0, is
constituted by the hyperbolic ones which are uniformly non-elementary. This
means, there is a constant a > 0, such that for every vertex zo € X there
exists an a-quasi-isometric embedding of the infinite tripod Tr into X sending
the center of 73 into zo, (Where It is the union of three copies of [0, 00) joined
at zero). For example, every geodesically complete simply connected manifold
X with K(X) < —¢ < 0 falls into this category.

Remarks. (a) Our complement Kerd to Imd, is a particularly nice one as
it is universal in a variety of ways. For example, it is independent of p (as
explained below) and it is invariant under automorphisms of X. Besides it
is locally defined as 3 is a local operator (i.e. dp(a) depends only on (o)
for all o' adjacent to a). The projection operator P : £,C' — Imd, and
the homotopy operator h : £,C' — £,C° are certain integral operators (of
course, “integral” here refers to sums, but we prefer the integral language)
with kernels, say I1(#,0’) and H(a,q’), (where o, and ¢/ run over the sets of



8. L,-Cohomology 249

the 1-simplices), independent of p. So it is no surprise that the boundedness
of these operators for certain p’s interpolates to other values of p. (In our
case we know, that if Im dy is closed for some py > 1, then it is closed for all
finite p > pp by Ildlder inequality and so the boundness of P and/or H for
po implies that all finite p > py.)

(b) Using Ker 3 for the complement to Imd is common in the £;-theory where
these spaces are orthogonal and together span all of £,C* (thus Ker @ equals
the complement of the {;closure Tmd). It is unclear under which circum-
stances Ker @ complements Imd (or the ¢,-closure Imd) in the {,-sense in a
given degree k > 2. This can be interpreted again as a boundness question
for a specific integral operator which can be explicitly written down for some
X, such, for example, as symmetric spaces (where we deal with the de Rham
complex, rather than with a combinatorial d. See [Pan]g 74 for some results in
this direction.). Notice that the basic fact of the above mentioned £;-(Hodge)
theory reads tf an £2-cochain ¢ satisfies 3dp = 0 then dp = 0, and we want
to know when this remains valid for £,,p # 2. But it is not even a priori
clear if this property for a given p is invariant under subdivisions of X. (The
existence of some £,-complement to Imd is an invariant property. In fact, it is
determined by the £,-chain homotopy equivalence class of the chain complex.)

About the weak acyclicity in degree zero. Let us show that every infinite
connected polyhedron X is weakly £,-acyclic in degree zero for all p in the
interval 1 < p < oo (under the standing assumption that X is uniformly
locally finite). This is done using the usual cut-off of cochains ¢, denoted
¢ =+ ¢, which is the multiplication of ¢ by the characteristic function of the
t-ball in X around a fixed point in X. It is clear that lle —ell,, — 0 for
t »0if1 <p < oo. Since X is infinite connected, the operator dy is
injective and therefore invertible on its image. Its inversion followed by the
cut-off operator ¢ — ¢; is an £,-bounded operator as it has finite dimensional
range. This also allows us to extend the composed operator ¢ — (dy'c), to
the desired operator h; : £,C" — £,C° satisfying ||hd(c) — ¢l — 0. Q.E.D.

Remark on Kerd. It would be interesting to know if the £,-closure Imdy
can be £,-complemented by Ker & and the first thing to show is the relation
Imd,N Ker 8) = 0. Since every ¢ € Im d, is (exact) of the form ¢ = dg, where
¥ 18 not in general, in £, it i1s sufficient to prove that

Ap=0 and dp€f, = =0

1t may be true (and known to analysts) in a quite general situation. llere
we show Tmd, N Kerd, = 0 for p < oo, provided X admits a cocompact
automorphism group I' which we assume (though it is not truly necessary
for our argument) discrete. If T has polynomial growth, then it is virtually
nilpotent and so there exists an element v € I of infinite order, such that
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dist(z,y(z)) < const < oo for all z € X. This inequality shows that
de€t, = yp—vp€l,

and as

Ap=0 = Alp-9)=0,
we conclude that ¢ — yp = 0 as earlier by the maximum principle. But since
~ has infinite order its orbits are infinite, and so

p=7p andp € b, p< oo, > =0

Now, let T’ grow faster than polynomially. Then by Varopoulis’ isoperimetric
inequality,

lelly, <A ||d¢||l" for all p’ < p < oo and y € £,C°,

(where A dcpends on p and p’ but not on ). It follows that every ¢ in the
£y-closure of Imdg 18 dy for ¢ € £, for every p’ > p, and so the equation
Ay = 0 makes ¢ = 0 by the maximum principle.

Finally, we apply this to p and ¢ satisfying %+% = 1 and conclude that Ker 8,
complements Imd, in £,C? for all p in the interval 1 < p < co.

The case p = 2. It is obvious for the £;-theory that
acyclicity & GLH* =0
and by the spectral theory
weak acyclicity < GH =0.
But we know that a space X may have H,/{ = 0 while LH™ £ 0, as it
happens, for example, if X = R® of X = Hg"*'.

¢,- Hodge. This means that Imd;_, can be £,-complemented by some subspace
I+ C £,C" for ¢ = 1,2,... . In this case the intersection I} N Kerd; is
canonically isomorphic to £, ‘. Then it is additionally required (with our
definition of ¢,-Ilodge), that £,H* can be complemented in I} D £, H* which
gives us projections B; : £,C* — £,H', i =0, 1,... as well as an operator of
degree —1 (homotopy) k : £,C* — £,C*, such that

dh+hd=1--B

for B = {By, By,...}. Thus {,C" is chain homotopy equivalent to the complex
{4, d =0}

Weakly £,,-Hodge. Here we require the existence of complements. /! of Imd;.
in £,C* (which allow us to identify the reduced cohomology £, H with I} N
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Kerd; C £,C") and of complements of &, H in I' which give us projections
B : {L,C' — L,H'. But now, instead of a single homotopy, we insist on a
family hq, such that

l(dh: + hed) — ¢ + Byll,, =2 0
for all ¢ € £,C".

There is another (a priori weaker) version of “weakly Hodge” where we just
require an approzimative chain homotopy equivalence between the complexes
{¢,C*,d} and {¢,IT",d = 0}. Here “approximative” refers to the following
(weak) notion of homotopy between two homomorphisms a and b of a chain
complex into itself, a e b & there exists a family of operators h, of degree
—1, such that h.d — dk, converges for t — oo to a — b in the strong operator
topology (i.c. A, = B iff |Awp — By|| — 0 for every ¢).

The properties “Hodge” and “weakly Hodge™, whenever they hold true, great-
ly facilitate homological algebra in the £,-category (as it happens for €3, see
[Ch-Gr)s). For example, the ezact sequence for pairs of complexes is obvious
for the non-reduced {,-cohomology, but if we want it split or be valid in
the reduced case, we need something of Hodge. Also it seems hard to have
a satisfactory Kunneth formula for £,H*(X x Y) without Hodge (compare
8.C, below). Probably, one could (and should) modify the definition of the
£,-cohomology to have a built-in Hodge (or weakly Hodge) property.

Generic questions on reduced versus non-reduced. We do know that some-
times the £,-cohomology may be non-reduced, i.e. LH'(X) # ¢, H'(X), and
it may cven happen that ¢, H!(X) # 0, while L, '(X) = 0. However, this
appears a rather unstable phenomenon which could be distroyed by a small
perturhation of p and/or the (geometry of) X. Here one should be careful
when X is a group or a related space as the deformation of geometry is highly
restricted. For example, if X = R™ (or an arbitrary group with an infinite
center for this matter) then the reduced cohomology is zero for p # 1, 00. Yet
LI(R™) £0fori=1,...,nand 1 < p < 0o. Here a natural deformation
of R" would be a nilpotent group X, but these also have £,H* £ &,1I' = 0
for all p and 1 < i < dim X. This example may look rather discouraging but
one should take into account that Abelian and nilpotent groups arc highly
non-generic by any standard.

8.C,. Kiinneth formula and vanishing theorems. There is an obvious
pairing

CH'(X)QLH(Y) - LH (X xY)
which is matched by a pairing on homology

LH(X) R LH(Y) — LH(X X Y).
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It follows, by duality for :v; + il‘ = 1, that this pairing is non-degenerate on
the reduced (co)homology. For example, if Z,H'(X) # 0 and Z, H’(Y') # 0 for
1 < p < 0o, then Z,—H'+’(X xY) # 0 as well. Yet, it is unclear if (or when) all
of (co)homology of X x Y comes from that of X and of Y. More specifically,
if LH(X)=0for:=0,...,i, and {L,LHI(Y) =0, j = 0,...,jo, we want
to know whether L, H*I(X xY)=0fori+j =0,...,i0+4 jo + 1 and the
same question applies to the reduced cohomology Z,H". This question has a
positive answer on the Hodge level.

Acyclicity Proposition. If X is {,-acyclic (weakly Ly-acyclic) in degrees
0,...,ip andY is{,-acyclic (weakly {,-acyclic) in degrees0,...,jo, then X xY
is £,-acyclic (respectively weakly €,-acyclic) in degrees 0,...,40 + jo + 1.
Proof. The complex £,C*(X x Y') naturally splits into double complex which
is more convenient to express in the language of differential forms rather than
cochains. Namely, the (i, j)-component £,C* consists of (i, j)-forms that are
a(z,y)dzy A...Adz; Ady, A ... Ady; and the two differentials are d. and d,
which act on a(z,y)dn A ..., by

dz(a(z,y)dz A...) = (E g—dx,,) Adx A ..

“ I

d(a(z,y)dz A..) = (E g;dyv) AdoA... .

Thus d.d, = —d,d. and d. + d, = d. Every endomorphism (homotopy) of
C*(X) of degree —1 induces an endomorphism, denoted k, of C* of bi-degree
(~1,0) (i.e. C* — C*-19), which can be thought of as an integration with
respect to z. Similarly, a homotopy of C*(Y) gives us a homotopy h, of C*
of bi-degree (0, —1), which formally is an integration with respect to y. Notice
that h. anti-commutes with d, and k, anti-commutes with d.. (This trivial
point kept me confused for some time until I caught a remark slipped from
Ofer Gabber.) Now, we define the total homotopy by

h=hy+hy(1 — dh, — h.d)

and observe with the anticommutation relations that it does the job. This
concludes the proof in the acyclic case and the weakly acyclic argument goes
the same way. Q.E.D.

Let us combine the above with the acyclicity in degree zero established earlier
and conclude to the following

Vanishing Corollaries. (a) Let X be the Cartesian product of k-copies
of uniformly non-elementary hyperbolic spaces, e.g. Cayley graphs of non-
elementary hyperbolic groups. Then X (s {;-acyclic in degrees 0,... ., k—1 for
1 < p < 0o and consequently L,H (X) =0 fori=0,...,k—1.



8. L,-Cohomology 253

(b) Let X be the Cartesian product of k infinite connected polyhedra, each
admitting a cocompact automorphism group. Then X is weakly ¢;-acyclic,
1 < p < oo, in degrees 0,...,k — 1 and 30 it has zero reduced cohomology
LH(X),i=0,...,k—1.

Remarks, applications and further questions. (1) Summable gradients. Look
again at maps f : X — R™ having || A* f|| in L, where A*f denotes the
k-th exterior power of the differential of f. (This may be extended from the
smooth category to polyhedra X by linearly interpolating maps defined on
the set of the vertices of X.) We have seen in 8.B that the existence of certain
maps of this kind yields non-vanishing ofm* and now we can turn it around
and conclude to some degeneracy of f in the case X = Xp X ... x X;. It
would be interesting to obtain more precise information about such maps.

(2) Symmetric spaces of non-compact type and affine buildings. Such spaces
X are similar to Cartesian products of k hyperbolic spaces for k¥ = rank X
and so we ezpect that

(?) If the isometry group of X is semisimple (i.e. no Euclidean factor) then
LH(X)=0,1<p<oo,i=0,1,....,k—1. (If X has an Euclidean factor,
then it admits an isometry with bounded displacement and so £,/T" = 0 for
ali=0,1,....) On the other hand, the group 2,,_}7", probably, is non-zero
for some p. This is definitely so for buildings (see below) where one may even
expect Eﬁk # 0 for all pin the interval 1 < p < oco. Also, we conjecture
that £, H* is reduced which means {, H* = ZIT (and is equivalent to Imd,_,
being £,-closed), provided X has no Euclidean factor.

Here is some evidence in favour of these conjectures.

(+) Vanishing of £, H'. Let us show that £, H'(X) = 0 assuming rank X = 2.
Take a singular geodesic 4 in X and consider the totally geodesic subspace
Y, C X cousisting of all geodesics parallel to 4. This Y, metrically splits,
Y, = Y’ x R where R corresponds to 4 and where Y’ is a symmetric space
(or building) of rank one. Because of R, the reduced cohomology W'(Y)
vanishes while the presence of the Y’-factor insures the linear top-dimensional
isoperimetric inequality for Y, and thus the equality £, H'(Y,) = ?—_ {1 (Y,) =

0. Now, we take an arbitrary closed L,-form a on X of degree zero, write
a = dyp, where p is normalized (by adding a constant, if necessary), such that
i restricted to Y, lies in L,(Y,) and claim ¢ isin L, on all of X. (We switched
the notations from £, to L, as we use the language of differential forms but this
is pure linguistics.) This is proved by first showing that the restriction of this
@ to Y., for another singular geodesic ' is again in L,(Y,s). Indeed, for every
pair (7,4’) there exists a chain of singular geodesics 1 = ¥, v2,..., % =7
such that Y, and Y,,, intersect across a geodesicforalli = 1,...,k—1. Since

N4l
cvery geodwc is unbounded, there is at most one (additive) normalization of
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¢ which makes it £, (for p < 0o) on this geodesic and so
peL(Y,) = p€LyY,) i=1,...,k
What remains to show is the implication
p € L(Y,) forally = ¢ € Ly(X),

but this follows from the Crofton formula expressing integrals over X by first
integrating over Y, and then over the space T of singular geodesics v in X
with some invariant measure dy on I'. Namely, we start with the inequality

[ 1ol 2)dz < 2 [ 141 (z) dz (*)
Yy Yy

(which follows from {,H'(Y,) = 0) and conclude to the desired inequality
[P (z)dz < [ 1417 (2) de
x x

by integrating (*) over T' and using the Crofton formula

/ ¥(z)dz = / dy / ¥(z) dz.
X T

Remark. This argument works for rank > 2 and also for buildings as well as
for symmetric spaces of rank 2. Also an obvious modification (and simplifica-
tion) of this proof shows that

LH (X1 x X3) =0, p<oo,

whenever L, H'(X,)} = l,Tl (X1) and where X is a connected space of infinite
volume (thus having £, H%(X;) = 0).

Question. When does a complete simply connected space X with non-positive
curvature have L, H'(X) = 0 for all p < co? Probably, the relevant geometric
condition is connectivity of Tits’ boundary of X. (A natural generalization
of this question applies to semihyperbolic spaces and, in particular, to semi-
hyperbolic groups.)

(++) Vanishing of £LH'. If X is a symmetric space then &H (X) = 0
for i = dim X/2 and I suspect it is also known that £;H'(X) = 0 unless
i = dimX/2 or i = (dim X & 1)/2. Furthermore, if X is a building, then
LH(X)=0fori=0,...,k—1and GH (X) # 0. This is proved in [Gar]
(also see [Bor]) under certain restrictions on X, but these, I recollect, have
been eventually removed. The argument given by Garland in {Gar] has a
certain stability to it which seems to imply €, H*(X) = 0 for i < k and p close
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to 2. On the other hand, since dim X = k, the non-vanishing of W(X )
amounts to the existence of a non-zero {;-cycle ¢ of dimension k. Such a c is
then contained in ¢,Cj for every p > 2 which yields l,—lI*(X ) # 0 for every ¢
in the interval 1 < ¢ < 2.

Symmetrization. Given an arbitrary ¢ € £,Ci which does not vanish on some
k-simplex &, one can average c over the (compact!) group G, of the auto-
morphisms of X fixing o and then the resulting averaged chain € remains in
£,C and non-zero, becoming G,-invariant at the same time. One knows that
the group G, is rather large: if we take an arbitrary flat F = R* containing
o (and such F does exist) then the orbit G,(F) equals all of X. Thus € is
determined by its restriction to F. Probably, the p-adic theory of spherical
functions provides sufficient information on such & F to decide in which ¢,
they reside. (If k = 1, then X is a tree and ¢ € £, for all p > 1 as is scen on
Fig. 20 at the beginning of §8.)

L H* for amalgamated products. The elementary homological algebra works

for computation of £, H* of amalgamated product of groups. For example,

if I' =Ty + Tz, where L,H{(Ty) = €,H'(T;) = 0 and {LH'(Tp) = 0, then,
[}

obviously, £, H*(T') = 0. In particular, if T, is infinite, then
LH'() =0,i=1,2 = &H'()=0,

but the situation is not so clear for the reduced cohomology &, H if p £ 2.

8.C,. The L,-cohomology sheaf on the ideal boundary 9, X. Here we
assume X is a geodesic hyperbolic space, we compactify X by adding the ideal
boundary and denote this by X = X U8, X. If what follows we suppose X is
a sufficiently regular space, for example a manifold of negative curvature or a
contractible uniformly locally finite polyhedron, e.g. Rips’ complex of a word
hyperbolic group. Our first objectives are continuous functions ¢ defined
on an open subset D C 8, X which admit continuous extensions ¢’ to open
subsets D’ C X containing D, such that the restrictions @'|D for ) = D'—D
have ||ldy'|| in L, (or ¢, if we insist on the combinatorial language). These
functions forin a linear subspace in the space of all continuous functions,
denoted Wp(D) C C°D), and as we vary D, these spaces form a sheaf Wy
on 8., X. (Sheaves of this kind were introdnced by Pansu in [Pan]s and much
of our exposition here is parallel to that in [Panjg.) It is useful to generalize
this definition to continuous maps ¢ : D — Y where Y may be an arbitrary
metric space and where ||dy’[|(z), for an extension ¢’ to X, denotes the limsup
of the Lipschitz constants of ¢’ on a fundamental system of neighbourhoods of
z in X. Thus we have the notion of L, for ||dy’|| and can define WI(D — Y).
(f Y C R then W3(D — Y) C @} W2(D) and nothing new enters the
picture.) Typical questions we ask in this framework are as follows.
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Given an open subset D and a continuous map @9 : D — Y. For which
p does there exist ¢ € WO(D — Y) homotopic to g or equivalent to ¢,
in a somewhat weaker (e.g. homological) sense? What is the minimal p,
such that tbe above ¢ € Wg exists for all (D, ) or for a single “interesting”
representative (which may mean that ¢, induces a non-trivial homomorphism
on the cohomology in a given degree)?

There is a generalization of the above questions where ||d¢’|| is replaced by
|| A¥ ']l that is the norm of the k-th exterior power of dp. If Y is a smooth
(possibly infinite dimensional) manifold or a polyhedron the definition of || A*
¢"|| is clear. In the general case one may define || A* '||(z) as follows. Take
a k-dimensional submanifold (or a local cycle) V with boundary containing
z in the interior of V, set

I A* (V)] = (FillRad(¢ (V) C ¥))*/ Vol V
and then let || A¥ ¢’]|(z) be sup || A* ¢'(V)||(z) over all V in X containing z.
v

On the continuity of extensions from D to D'. The continuity condition
is not indispensable. In fact, one may define another sheaf of spaces, say
W, (D), D C 0,X, as the inductive limit of the spaces of functions ¢’ on all
open D' O X extending D, such that dy’|D’ is in ¢,. Similarly, one defines
W,(D — Y) and then one may compare the connected components of the
space of continuous maps D — Y to those of Wy(D — Y) where paths in
the latter space are defined as restrictions of suitable homotopies of maps
D' — Y. For example, let Y be a subset of a Banach space. Then the
(continuity) condition on a homotopy of maps h’(z,t), (z,t) € D’ x [0,1] can
be expressed by

[ lde(b(z,t2) = Kz, )P do < e,
Dy

where € — 0 as |t} — 3] — 0. This condition should be augmented by some
normalization as the differential defines a map only up to an additive constant.
A possible way of such a normalization is the requirement h'(z,0) — k'(z,t) €
£, for all ¢ € [0,1] and some (large) p/ < oo.

Remark. Every function ¢ on D' with dp € L, can be extended to 9,0’ =
D' N 8,X in a measure theoretic sense as for almost every (quasi)geodesic
ray r(t) in DY going to 3,0’ for ¢ — oo the function ¢(r(t)) converges to
a definite value depending only on .l_igmo r(t) € X (but not on a choice of
r(t)). To make this precise, one should choose a measure class on 95,0 and,
in fact, any reasonable measure serves our purpose. For example, one may
take the measure we use to define L,, restrict it to the R-balls around a fixed
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point, normalize the resulting (finite) measures to have total mass one and
take a weak limit of these for R — oo. This measure is good for us as any
comparable measure. The proof of that is due to Strichartz (see [Str], and
[Pan}g, where the authors deal with a slightly different situation but their
argument works in our case as well).

Cohomology of D C 05, X representable by L,-forms on D’ D D. It is hard
to speak of a “continuous extension” of a k-form (or cochain) from D to D’
unless X = X U 8., X carries some smooth (or at least Lipschitz) structure.
(Such structures may be available in some examples, e.g. if X is strictly 1/4-
pinched, and continuous extension of forms may reveal something useful about
such smooth structures but we do not enter this discussion.) However, a k-
dimensional cohomology class a can be usually extended from D to some D’
and then we look for the smallest p such that the restriction of the extended
class to D’ C D (recall that D' = D' — 8,,X C X) can be represented by a
closed £,-form (or cochain) of degree k. This number p = p(a) gives us an
interesting invariant of & (and of X as we vary a) which is similar to inféim
studied in §7.

Ezamples justifying the definitions. We start by showing that the sheaf W;’
is sufficient to distinguish points in 3,X provided p is sufficiently large.

Claim. There ezists a continuous map @ of X into the Hilbert space R™ such
that ¢ on X has dy in £, for some p < oo and the restriction of ¢ to 9. X
is an embedding (i.c. one-to-onc).

Idea of the proof. Change the metric in X using a positive conformal factor
p(z), so that the new distance dist, between 1, and z, equals the infimum of
the integrals of p over the curves joining z, and z;. If p € L, then for every
zp € X the function p(z) = dist,(zo, z) has ||dp(z)]] < p(z) and so it is in
L,. Moreover, the distance function from an arbitrary subset in X also has
the gradient in L,. Next, if we want sucb distance function to be extendable
to 8, X, we must assumc uniform summability of p along the geodesic rays
issuing from a given point zo € X. But the extended distance function may
becomne constant on 3..X.

Conformal dimension of 8,,X. This dimension is, by definition, the infimum
of those p for which there exists a positive p € Ly(X) for which dist, extends
to a metric on X = X U8,X. This amounts to saying that X equals the
metric completion of (X, dist,). (This definition of the conformal dimension
is essentially equivalent to that in [Pan]s.)

Observation. Every hyperbolic space of bounded (exponential) growth (e.g. a
word hyperbolic group) has conf dim 3, X < oo.

This is shown with p(z) = exp(—Adist(zo, z)), where A is sufficiently large
(compare [Flo], [Gro-Pa] and Appendix to §8).
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Remark. 1t follows from [Pan]s that conf dim 3, X > dim 3., X.

Now, for every p > conf dim 8., X, we have a distance function on 8,, X which
L,-extends to X and then it is not hard to make up our embedding to R*. (It
is obvious, there exists such an embedding to Lo, by r + dist(z,-), but R®
is somewhat neater. In fact, it seems not hard to make such an embedding
into some RY, N < 00, as X is assumed to have uniformly bounded local
geometry.)

Remark. If X is an n-dimensional Riemannian manifold with pinched nega-
tive curvature, there is an obvious embedding ¢ : X — R with ||dy|| € L,
with p depending on the pinching (compare 8.B).

Non-vanishing of LH' (X). If X is uniformly non-elementary (e.g. a word
hyperbolic group non-commensurable to Z) then Z,_Hl(X) # 0 forp >
max(1, conf dim 85, X ).

Proof. Take two disjoint subsets Ao and A, in X, a continuous function ¢ on
X with ||dg|| € Ly, sucb that ¢|4s = 0 and p|A; = 1 and a (quasi-isometric)
infinite regular tree in X as in Fig. 22.

Fig. 22

This tree supports an ¢,-cycle ¢ (see Fig. 20 at the beginning of §8) for which
{dp,c} # 0 and so dy gives us a non-zero L,-cohomology class.
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Remarks. (a) Non-word hyperbolic groups. The above discussion obviously
extends to (non-quasiconvex) subsets ¥ in X and yields non-vanishing of
L,H'(Y) in-so-far as Y contains (a quasi-isometric copy of) a triadic tree.
For example, every non-elementary isometry group T of X has {,H'(I') # 0
for all sufficiently large p. This applies, in particular, to non-elementary
subgroups ' in word hyperbolic groups as well as to the (non-uniform) lattices
in simple Lie groups of rankg = 1. In fact, this non-vanishing is shared by the
groups ' admitting left invariant hyperbolic metrics of bounded ezponential
growth and having infinite 3,,I' with respect to such a metric.

(b) Conformal boundary. This (ideal) boundary, as defined by Floyd (see
[Flo}), appears in the metric completion of (X, pdistx) for a suitable confor-
mal factor p. Let us indicate another definition which is better adjusted to
the present situation (compare [Roe],). To be specific, assume X is a com-
plete Riemannian manifold and let ¢ denote the set of C'-functions ¢ on X
with the following two properties

(i) lgllon < 0o, ie. ¢ and [|ds]] are Lo,
(i) ||dy|| is uniformly summable on the quasi-geodesic raysin X.

This means, that the restriction of ||dy|| to every quasi-geodesic ray 7 in
X is in L(y) with a certain uniform bound on the L,-norm. This bound
is conveniently expressed in terins of the supremum §(R) of ||dp(z)| over
the complement to the R-ball around a fixed point zo € X by requiring

T8(R)dR < .

Now we define the conformal completion (or compactification) CCX D X as
the maximal space, such that X is dense in CCX and every function ¢ € &
continuously extends to CC'X. More formally, CCX equals the space of the
mazimal ideals of the ring ®. (The function space ® is a ring for the usual
addition and multiplication of functions.)

Basic ezample. 1f X is hyperbolic then CC X is canonically homeomorphic to
X = X U8 X (compare [Gro-Pa]). Next, we define the conformal boundary
OcontX = CCX — X and we want to know when 8., X is sufficiently large,
e.g. contains a Cantor set. The above example shows that X is large
for non-elementary hyperbolic groups X. Another example of large Joonr X is
provided by groups X with infinitely many ends as Oou X surjectively maps
onto Ends(X).

Next, let L denote the space of functions ¢ on X with ||dg]| € Ly(X) and
let us define the conformal dimension of X as the infimal p for which the ring
L} N ¢ has the same maximal ideals as ®. This means, for every two points by
and b; in Geonr X, there exists a function ¢ € LyN®  such that p(by) # o(b,).
It is not difficult to find a (quasi-isometric) triadic tree in X, provided the
conformal boundary of X is large (i.e. contains a Cantor set), and then show
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as earlier that
p > max(1, conf diim X) = L, H'(X) # 0.

Yet the following questions remain open:

(1) What are sufficient conditions for the conformal dimension to be finite?
For example, does every finitely generated group X with large Goons X have
conf dim X < oo?
(2) When is the subset L] N ® dense in L}? When do L} and L} N & give us
the same cohomology classes in L, H!(X)?
(3) Denote by I:; C L, the subset of bounded functions and observe that f,,',
is a ring. Let C';E'PX denote the space of the maximal ideals of i,; and define
(compare {Hig])

corona, X = CCuX — X.
Can one identify corona, X with the set of the maximal ideals of some (natu-
ral) ring of (Borel) functions on G.nr X7 Observe that L,(X)N Ll constitutes
an ideal in the ring Ll such that the quotient ring ll equals the kemel of the
natural homomorphlsm L HY(X) — H}{X;R). How does corona, X relate to
the space of the maximal ideals of H!? (Compare [Pan]s s for the hyperbolic
case.) Arc there finitely presented groups X, where Ocons X reduces to a single
point but Zp_Hl(X) # 0 for some p strictly between 1 and oo?

Conformal cut-connectivity of OcontX. Let us indicate another invariant of
OcontX which is a priori smaller than conf dim and which measures the con-
formal size of cuts necded to disconnect G.onsX. This invariant, denoted
¢ Ocont X, is defined as the infimum of those p for which there exists a a con-
tinuous function on CCX which is non-constant on Ot X = CCX ~ X
and has ||dy|| in L,(X) (compare [Pan)s). It is clear that cccfoomrX <
conf dim 9., X and that HI(X) # 0 for p > max(l, cccOeont X), if X is
a uniformly non-elementary hyperbolic space.

Ezamples. (a) Disconnectedness at infinsty. If X is disconnected al infinity,
then, clearly, ccc 8.ontX = 0 and consequently, L_,ﬁl(X) #£0forallp> 1,
provided X is a uniformly non-elemnentary hyperbolic space. In fact, this
non-vanishing conclusion obvionsly remains valid for non-hyperbolic X with
infinitely many ends in the uniform sense which allows a quasi-isometric em-
bedding of an infinite regular tree into X which is injective on | the set of ends
(compare 8.3.L in [Gro),4 where there is another proof of L, '+ 0).

(b) Amalgamated products. Let X be (or correspond to) an amalgamated
product of groups X =T =T, l'?; I';. One might think that ccc Gonl" could

be bounded in terms of conf dim @..ntTo, as it happens according to (a) for
finite groups [p. But this is not so for infinite Ty, since

LHY) =0,i=1,2 = {LH'(T)=0,
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as we have seen earlier. This suggests that coc Feont X = conf dim Gconr X for
most spaces X. This may be expected, in particular, for hyperbolic spaces
X (where Ocoat = -0nr) Which are connected at infinity and admit cocompact
isometry groups.

Representation of cohomology in OcontX by p-summable forms. The above
cce-definition can be expressed in terms of p-summability of closed 1-forms
on X representing relative cohomology classes in H!(C'C X, D) for some D C
OcontX. Now we want to address a similar problem (already mentioned earlier)
for the (absolute) cohomology of degree k > 2. Namely, let D be a compact
subset in et X (one may think of the hyperbolic case where Gcont = o,
e.g. X may be a simply connected geodesically complete manifold of strictly
negative curvature With BeontX = 80X = S™') and a € H*(D;R), where
the cohomology is understood in the sense of Cech. Such an a extends (as
follows from the definition of the Cech cohomology) to a cohomology class
in some neighbourhood D' C CCX of D and we ask whether this extended
class, when restricted to I¥ = D' N X, can be represented by an L,-form
of degree k (or by £,-cochain) on I'. We have seen, in the hyperbolic case,
that if p > confdim .40 X, then CCX admits an embedding ¢ into the
Hilbert space R*, such that |[dp]|| is p-summable on X. (Recall that in the
hyperbolic case CCX = X and Bcont = 8x.) Then every a can be represented
by a bounded form in some neighbourhood U C R* of D which pulls back
(by ) to a pr-summable form on DY for pr = p/k. This suggests the following

Definstion of conf dim,. This is the infimum of those p for which there ex-
ists an embedding ¢ : CCX — R™, such that the k-th exterior power of
the differential of » on X is p-summable, i.e. || A* || C L,(X). Clearly, if
conf dimy 8canr.X < p, then every @ € H*(D;R) admits a p-summable repre-
sentative on some [J'.

Remarks (a) The invariant conf dim; is a kind of a dual to inféim A; of 7.C,.

(b) The full invariant of Ocons Which goes along with this discussion is given
by the set of strings of numbers {py,...,ps,-..}, such that CCX admits an
embedding ¢ to R™ such that || A* p|| € L,, for k=1,2,....

A lower bound on p. Given a cohomology class a € H*(D;R), we say that
a subset A C D is a-non-trivial if there exists a map of a k-dimensional
polyhedron P into A, such that a pulls back to a non-zero class in H¥(P;R).
Denote by A, the set of the a-nontrivial A, and observe with the discussion
in 7.C, that in the hyperbolic case infdim A, provides the following bound
onp

inf 5imA, > k/p. (+)

This means that no extension of a from D to any open subset D' ¢ CCX,
where the closure of I = D' X in CCX contains D, can be represented by
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a p'-summable k-form in DY for p < k~'inf 6imA,. (We suggest the reader
would generalize this to non-hyperbolic X.)

On the L, H"-sheaf on OcongX. This sheaf was introduced by Pansu (see
[Pan)s) for manifolds of negative curvature. This sheaf assigns to each D C
Ocont X the inductive limit of the L,-cohomologies of the open subsets IV C X
containing D in the CC X-closure. Pansu shows, in some cases, that this sheaf
behaves as an ordinary sheaf of certain function spaces on G.ontX. The sheaf
LyH* for k > 2 appears especially interesting for non-hyperbolic spaces X
(e.g. for semihyperbolic spaces of rank k) as it may be used to define an ideal
boundary of X. (A naive idea would be to interpret closed k-forms at infinity
as functions on k-dimensional subvarieties in the ideal boundary we want to

define.)

Negative remark and positive ezamples concerning A,. Our definition of A,
is rather unsatisfactory if d.ons X is a2 compact space of a general kind which
receives few (if any) non-constant mnaps from polyhedra. On the other hand
if (CCX, BoourX) is homeomorphic to (B®, 8B™ = S™7?), as is the case for
manifolds of negative curvature, then our A, perfectly serves its purpose. For
example, if X = Hg then

inféimA, = k/n—1 forevery a#0

as follows from the argument in Example (a) in 7.C,. Similarly, Example (b)
in 7.Cy shows for X = H2" that inffim A, = k/2n for ¥ < n — | (which is
smaller than that for X = H}").

Translation algebra. As we mentioned earlier, the £,-cohomology goes along
with uniformly proper Lipschitz maps and Lipschitz homotopies. Then, if
we look at Lipschitz self-homotopies of X we see they span an algebra of
operators acting on our complexes whose essential features are seen in the
following

Definition. Let X, be a discrete metric space (e.g. the vertex space of a
polyhedron X'). Then the translation algebra A(Xp) consists of (Xp x Xg)-real
(or complex) matrices A = {a(z,y)}, such that a(z,y) = 0 for dist(z,y) > d
for some constant d = d(A). This algebra acts on Ly(Xo) for every Xp
and thus inherits a variety of topologies from the spaces of operators. The

semigroup of translations of X (which are maps ¢ : Xy — Xp with sup
z€Xp

dist(z,p(z)) < 0o) naturally embeds into A(X)).

If two spaces X, and X} are bi-Lipschitz equivalent then the corresponding
translation algebras are isomorphic. On the other hand, if X, and Xg are
Hausdorff equivalent (i.e. distau(Xo, X§) < oco) then these algebras need
not be isomorphic. For example, multiplying Xo by a finite set F amounts to
tensoring A(X,) by the matrix algebra M, for n = card F. Thus the algebraic
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counterpart of quasi-isometry must be some kind of Morita equivalence. One
can probably go quite far along these lines. For example, all of our L,-
discussion is likely to extend to the algebra theoretic framework (see [lig],
[Roe]s for some steps in this direction).

Appendix to §8 - Conformally hyperbolic groups and spaces.

Let X be a complete Rieinannian manifold or a locally compact polyhedron
with a complete geodesic metric (e.g. a Cayley graph of a group) and let us
enumerate the properties of 9.,0s X which are immediate from the definition.
(1) For each b € Geons X there exists a ray r C X starting from a given point
zo € X and converging to b. (Recall that a rayis an isometric copy of R,
in X.) Thus, there is a surjective continuous map Ogeo( X, Z0) — GconsX,
where the geo-boundary consists of the rays issuing from zo with an obvious
topology.

(2) If X is connected at infinity, then O.oneX is connected, since Gont X equals
the intersections of its neighbourhoods in CC X.

(2) There is a natural map from J.,atX to the space of ends EndsX, such
that the partition into the pull-backs of the points (ends) equals the partition
of 8.one X into connected components.

(3) For every two points b and by # by in Geunr X there exists a line v (i.e. an
isometric copy of R in X) which joins b, and b (i.e. ¥(t) — b, for t — +oo
and ~(t) — by for t — —oo). Furtherniore, there exists a compact subset
D C X depending on 6, and b, such that every line in X between b, and b,
intersects B.

(3’) Let ry(¢) and ry(t) be geodesic rays in X converging to b, and b; # b, in
8.0t X, where ¢ is the length parameter. Then

dist(r1(t), ra(t)) > 2t — const,
for some constant depending on ry and r; (but not on t).

(I) Two Ends Proposition. If X admits a co-compact isometry group action
and Ot X consists of ezactly two points then Xis quasi-isometric te R (and
thus if X is a discrete group it is commensurable to Z).
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Proof. If card Ocont X = 2 then also card EndsX = 2 by the properties (2) and
(2. QED.

(II) Convergence proposition. The action of isometry group Iso X on GcontX

has the following convergence property of Gehring and Martin. Let T C Iso X

be a set of isometries such that sup dist(g(Zo), o) = 0o for some (and hence
gel

every) point 2o € X. Then there exist points by, and b_ in Oeont X (which may
be equal) and a sequence g; € Z, i = 1,2,..., such that for every compact
subset By C BoontX —{b_} the maps g;| B, uniformly converge to the constant
map B, — b, and for every compact subset B_ C OcontX — {b,} the maps
g7 '|B- uniformly converge to B_ — b_.

Proof. Since CCX is compact, there exists g; such that g;(zo) and ¢;'(zo)
converge for i — co and we take b, =lim gi(zo) and b_ =lim g !(Zo). Take
a geodesic ray ry going from zg to b, and let r be a ray from z4 to some
point b € Pt X. Then there are two possibilities.

(i) There are infinitely many values of ¢, such that g;(r) intersects a fixed
compact subset in X;

(i1) gi(r) goes infinitely far away from zo for ¢ — oco. In this case, clearly,
gi(b) — by for i — oo.

On the other hand, in case (i) one easily sees by looking at g;(r,) and r that
r infinitely often approaches g7 '(zo) and thus converges to d_. Thus every
point b # b_ does converge to b, under the action of ¢; for i — oo and this
is clearly uniform on the compact subsets in et X {b_}.

Remark. The convergence property was isolated by Gehring and Martin
in [Ge-Ma] for actions on S as they were interested in (classical) quasi-
conformal geometry. Yet all their general results do not use anything but
compactness of S™ and thus can be applied in our case.

Let T be a discrete isometry group of X and 8% I' C cone X denote the limit
set of [, i.e. the set of the limit points of an orbit I'(zy) C X. This, clearly,
does not depend on zo and if X/I' is compact, then 8% ' = O.oul" is an
invariant of " alone.

The convergence property implies, according to Gehring-Martin (who have
axiomatized the classical arguments from the theory of Kleinian groups) the
following conclusions.

(III) The limit set may be of the following three types.
(i) card X, I =1,
(ii) carddX [ =2,

(iii) card3X 4T =00,
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where in case (i) 8%, is a perfect set and the action of T' on 8X,T is
minimal (i.c. every orbit is dense). Furthermore, the action of T on CCX —
X T is discrete.

A transformation v € T acting on CCX is called hyperbolic (or loxodromic)
if there exist two fixed points v4 and y_ # 4, in 8%, T, such that every
compact subset in B in CCX — {74} is contracted by 4 to v4 for i — oo,
i.e. ¥'|B converges, for i — oo, to the constant map B — -4, and similarly,
~~' converges ontside 4, to the constant map to y_.

(IV) If card 82T > 3 then the set of pairs (y4,7-) for all hyperbolic elements
4 €T form a dense subset in the Cartesian square of 3X T

This follows from Corollary 6.15 in [Ge-Ma) and the following pretty little
lemma pointed out to me by D. Sullivan many years ago.

Let a and B be hyperbolic transformations with a, # f_ and set 4(i) =
a'fla=if~". Then v, (i) = ay and y_(i) = A~ as1 — oo,

Corollaries. (a) If card@X ,I' > 3 then the action of T on 8% T has no
tnvariant measure and so ' is non-amenable.

(b) T contains a free subgroup on two generators (assuming card 3% ;' > 3
as earlier). In fact, if @ and 8 are hyperbolic elements with oy, # A4, then
sufficiently high powers o' and A’ freely generate Fy.

Remark. One can also show with a little extra effort that o' for large i freely
generate a free normal subgroup in [ (as I have not written the proof, 1
would feel safer with I" having no torsion). It is also likely to be true for large
generic elements (which are not proper powers) but I would not claim that
at my prescent state of understanding the picture.

Definstion of conformal hyperbolicity. A finitely generated group T is called
conformally hyperbolic if card consI’ > 3, where the conformal boundary
refers to the action of T on its Cayley graph.

Basic ezamples. Every non-clementary word hyperbolic group is conformally
hyperbolic. Every group with infinitely many ends is conformally hyperbolic.

Remarks. We could make up a more general definition by requiring the
existence of some X with an isometric I™-action, such that the limit set
ac)fmfl“ C O.omtX for this action had cardinality > 3. In fact, it would be
more logical to start with some “sufficiently hyperbolic” action of I’ on some
compact (or just bounded) space B, where the hyperbolicity could be ex-
pressed either by the divergence property or by something more general as
indicated in 8.2.K.-S. of [Groji4. Also notice that our definition of conformal
hyperbolicity excludes elementary word hyperbolic groups, but this is just a
matter of terminology.
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Further ezamples of conformally hyperbolic groups. Floyd shows in [Flo]
that every non-elementary geometrically finite discrete subgroup acting on
HRZ, n > 2, is conformally hyperbolic. The interesting case here is where I'
has cusps and the basic geometric point made by Floyd (in a computational
disguise, see proposition on p. 215 in [Flo] and the subsequent discussion) is
as follows. Take a large sphere S(R) of radius R in I and a horosphere S’
passing through the center of S as in Fig. 23.

S(R)

Fig. 23

Then the intrinsic diameter D’ of the part of the horosphere inside S(R),
denoted by S'(R), is about D® for the intrinsic diameter D = D(R) of S(R),
where a = § < 1. Using this Floyd shows that tbere is a (natural) continuous
T-equivariant map of Geontl' onto the ordinary limit set of I'. In particular, if
I is a (possibly non-cocompact) lattice, then there is a continuous surjective
map Oeons” — S™! and for n > 3 this map is a homeomorphism.

Idea of Floyd’s proof. The distortion of a geometrically finite T (embed-
ded into Hg as an orbit) does not exceed the distortion of the horospheres.
The conformal completion of H} can be achieved with the conformal factor
pe(z) = D(R(z))™'™*, where R(z) = dist(zo,z) and D(R) is the intrinsic
diameter of the R-sphere. The function p.(z) lifts to a function on I which,
for a small £ > 0, i3 uniformly snmmable on “geodesic rays” in T" as it decays
with the rate (dist(:o,:))—%“. Thus p, restricted to I serves as a conformal
factor for (the construction of the boundary of) I'. (See [Flo] for the details.)

Generalizations. The above argument immediately extends to HZ*, Hi® and
H{? as D'(R) there is also of the order of magnitude (D(R))g. It follows, in
particular, that the conformal boundary of a lattice T acting on a symmetric
space X of rank one is homeomorphic to the sphere 9,,X, unless X = H2
(where OoonT" for X = H? is a Cantor set for non-cocompact ' which is
virtually free in this case).



8. L,-Cohomology 267

The estimate @ < 1 remains valid (by an easy argument) for geodesically
complete manifolds X with —4 + ¢ < K(X) < —1, ¢ > 0. Thus every
I acting on X with Vol X/T' < oo is conformally hyperbolic and has 8.,ur
homeomorphic to the sphere deo X, unless diim X = 2. (We suggest the reader
would furnish the details.)

Now let X be a complete simply connected Riemannian manifold (or singular
space) of non-positive curvature. If the Tits boundary of X is connected,
then, clearly, the conformal boundary reduces to a single point. Then it
scemns likely that, in general, the conformal boundary must be equal to the
set of the connected components of the Tits boundary (with possible mild
extra assumptions on X, such as the existence of a cocompact I'-action). A
more specific conjecture reads:

Let X be the universal covering of a compact connected manifold V with
K (V) <0 having all sectional curvatures strictly negative at some point vg €
V. Then X (and hence ' = (V) )} is conformally hyperbolic.

Encouraging example. Suppose all flatness of V is confined to a locally
convez subset V' C V, i.e. K(v) < —e < 0 at every pointv € V — V', where
x1(V’) has infinite indez in x,(V). Then the universal covering X of V (and
kence T' = (V) is conformally hyperbolic.

Idea of the proof. Take the product V x [0, 00) with the Riemannian metric
(exp ~At)gy + dt? for some A > 0

and let V¥ C V x [0,0c) be the union of V x [0,1] and V' x [0,00) as in
Fig. 24.

The universal covering X+ of V't is, clearly, non-elementary hyperbolic and
we claim there exists a (natural) surjective continuous equivariant map from
Oeont X 10 Beong Xt = 00X *. This is achieved as in the previous examples
with a suitable metric on X+ with negative curvature. First we observe that
the metric (exp--At)gy + dt? docs have negative curvature, but X+ does
not because of the boundary. (Recall, the metric in X* is defined with the
shortest curves in X+ which may touch the houndary and the curvature is
understood in the C AT -sense, see [Gro)i4.) In fact, X* has K < 0 everywhere
except on the subset £ = X’ x 1, covering £ = 8V’ x 1 as an clementary
consideration shows. Furthcrmore, if A = 0, then V* (and X*) has K < 0
being a union of two locally convex subsets in a space with K < 0. On the
other hand, the curvature of the mnetric exp —Atgy dt? for A > 0 is strictly
negative on L == 8V’ x 1. Tt follows, by an easy argument, that there is a
slight perturbation of the boundary of V* ncar £ which makes the curvature
strictly negative (in the C AT -sense) on all of the perturbed X+. Moreover,
one can arrange the matter with a sufliciently small A > 0, such that the
curvature of the perturbed X+ becomes everywhere less than the curvature
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Vx0

V'x0

Fig. 24

of (the hyperbolic plane with) the metric (exp ~X't)ds® + dt? for a given
X' < M. It follows that the horospheres in X’ x [2,00) corresponding to the
rays z’ x [0,00) have I = D? for @ < 1 as in the discussion around Fig. 23,
and then Floyd’s argument applics.

Negative Remark. The above argument is unduly artificial. There must be
a more direct way to see the map GeontX — GonsX* without any appeal to
a specific metric. For example, one should prove the above whenever Xt is
hyperbolic with no assumption on the curvature of V.

Questions. (a) Let I act on a hyperbolic space X with an infinite limnit set
A in 3 X. Is then ' conformally hyperholic? Does there exist a surjective
I-equivariant map from G.aI" to A? For example, is every finitely generated
non-elementary subgroup of a word hyperbolic group conformally hyperbolic?

(b) Let T be the quotient group of a conformally kyperbolic group I' obtained
by attaching a generic relation to I'. Is then T conformally hyperbolic? For
example, does every conforinally hyperbolic group I' admit an infinite (free)
normal subgroup N with I'/N being conformally hyperbolic? Sununing up,
does every theorem about word hyperbolic groups have a conformally hyper-
bolic counterpart?

(c) Let T = (a,b | wy,wa,...,) for an infinite sequence of relations which is
sufficiently sparse and generic. What is the chance of I' to be conformally
hyperbolic and/or to have £, H'(T') # 0 for large p?
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9. Finitely Presented Groups

Density of random groups and other speculations.

Let us start by recalling elementary (and well-known, [ believe) combinatorics
of random finite (sub)sets.

9.A. Density and dimension. Given two finite sets A and B we write
dens A = adens B
if card A = (card B)*. More generally, we write

Y aidens A; =0

for [](card A;)™ =1 and

Za,- dens 4; > 0
for [1(card A;)™ > 1.
If we deal with subsets of a fixed set C we inay normalize by setting densC =1
and dens A = exp((log card A)/(log card C)). Then we define codensity by

codens A = 1 — dens A.

Intuitively one should think of dens A as dim A/ dim C. For example,if Cisa
vector space over a finite field then every affine subspace does have dens A =
dimA/dimC.

One knows, the generic affine subspaces A, and A; satisfy the intersection
formula
codim A; N A; = codim A, 4 codim A,

with the convention
codmA >dimC & A=02.

Now, we want to generalize this to (arbitrary) random subsets of a finite set
C, where card C — oo.
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Intersection formula. Random subsets A, and Az in C satisfy
codens(A, N A;) = codens A, + codens A,

with the convention

codensA>1 & A=0.

Ezplanation. Let us spell out the meaning of this “random”™ talk. Take
numbers a; and a3 in the interval [0,1] and three (small) positive numbers
€1, € and 8. Let ¢, denote the cardinality of the set of subsets A C C with
jcodens A — oy| < €, and ¢z be the same number associated to a; and ;.
Then we define c as the cardinality of the set of pairs (A, A;) satisfying

codens A, —ay| € £ (x
codens A; — oyl < &3 )
| codens(A; N Az) — oy —ay| <& (%)

Now, the precise stateiment behind the intersection formula is as follows.

IfcardC — oo for ay, aa, &), €2 and § being kept fized, then
cfcie — 1. (+)

Notice that the cardinality of the sct of pairs (A;, A;) satisfying (*) equals
c1¢c2 and so (+) tells us indeed that the relation

codens A; N A, = codens A, + codim A,

is satisfied with probability p ~» 1 for card C — oo.

Notice that (+) does not tell us much for oy + a2 > 1, but the intersection
formula claims, according to our convention, that if oy + a3 > 1, then the
intersection A, N Az is empty with probability p -+ 1. Namely, if we choose
€, and £z such that a) + a; — €, — &9 > 1, and let d denote the cardinality of
the set of pairs (A,, A;) satisfying (+) and for which A; N A; = &, then

dfcic; -1 for card C — oc.

Before engaging into the proof (which amounts to a trivial computation based
on the fact that 1 < e ="h_£2° (1 + 5)" < oo}, we state several properties of
random sets similar to the intersection formula where we assume the reader
understands “random talk”.

Self-intersection formula. The self-intersection £ of a random map ¢ :
A — B satisfies
dens Y = 2dens A ~dens B
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where card B — oo and where the relation dens £ < 0 signifies ¥ = @. Thus
the relation !
dens A < 2 dens B

implies that a generic map is injective. (Recall that T is defined as the subset
in A x A consisting of the pairs (a),a3) with ©(a,) = p(a1).) In particular,
if dens A < dens B then ¢ is injective away from a subset in A of positive
codensity.

Surjection property. If dens A > dens B then a random map A — B is
onto.

Intersection with a fized subset. Let B C C be fizedand p: A = C be a
random map. Then if dens A + dens B < l(df‘ dens C) then o(A)N B = @.

On the contrary, if dens A + dens B > 1, then o(A) N B # @. Moreover,
dens A - dens ™ '(B) = codens B.

1t is time to make a little computation. We start with the intersection of
a random map with fixed subsets. Denote by a, b and ¢ the cardinalities
of A, B and C respectively and observe that the probability P of a map
A — C to miss B equals (1 - %)n. Thus p — 1 for ab/c —» 0 and p — 0 for
abf/c — oo. But ab/c — 0 for dens A + dens B < dens C(= 1) and ab/c — oo
for dens A + dens B > dens C, and so the hit-or-miss alternative is governed
by the relations

dens A + dens B § 1 =densC

Notice that little changes in the above computation if we apply it to ran-
doin injective maps y, provided dens A < 1. Again, p(A) hits or misses B
according to the incqualities dens A 4+ dens B S 1 = densC (and again no
information is available for dens A + dens B = 1). Then the same conclusion
applies to random subsets A C C which amounts to random injective maps
A — C modulo permutations of A. Now, we can evaluate the density of
»~1(B) C A by intersecting it with a random subset Ap C A, which gives us
the relation
dens A — densy ™' (B) = dens C — dens B,

and a similar argument proves the rest of the above “randoin” claims.

Density of multiple intersections. Let A; C C, i = 1,...,k bec random
subsets. Then

k A
codens ﬂ A; =" codens A;.

Let p; : A; = C be random maps. Then the “intersection”

l={a,,...,akIgp](al)=¢z(a2)=...=¢pk(ak)} C A x...x A
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has
K
dens] = _dens A; — (k — 1) densC.
i=1

Let p: A — C be a random map. Then the set of the k-multiple points

Iy =A{a1,...,ax | p(a)) = p(az) = ... = p(a,)}

hes
dens I, = kdens A — (k — 1) dens C.

The proof of these properties can be obtained by an obvious generalization
of the above computation, but there is another more conceptual approach
based on a (better) definition of a densable random subset. This is a measure
on the set of all subsets Sbs(C) defined for every finite set C, such that
the distribution of the density function dens : Sbs(C) — [0,1] for A
dens A, A € SbsC, weakly converges to a point mass located at some point
z € [0, 1] which is what we call the density of tlie random subset in questi‘on.
The set theoretic operations over subsets obviously extend to random subsets
that are measures on Sbs C. For example, one may intersect random subsets
A and B in C but for densable A and B the intersection is not, in general,
densable and so dens A N B is not automatically defined. There are various
classes of densable subsets which are stable under set theoretic operations.
The basic example (which is all we need for the present paper) is constituted
by the random subsets dcfined by measures invariant under the permutations
of C. These are invariant under intersection and the intersection of densable A
aud B in this class is again densablec with codens ANB = codens A+ codens B,
which is just a re-interprctation of what we have said earlier. But now we
can proceed by induction and conclude to a similar result for intersections of
several (> 2) subsets.

Remark on other classes of densable random subsets. We have already men-
tioned that random affine subspaces in an affine space C over a finite field
F satisfy the intersection formula where the randomness refers to measures
which are invariant under the affine transformations of C and where there
are several choices of possible asymptotics. Namely, one may have F fixed
and let dimp C' — 0. Alternatively one may let card ¥ — oo (or deg F — oo
over the ground field). One may treat similarly random projective subspaces
in projective spaces P over F and, more generally, one can do the same with
the sets of F-points of random (non-linear) algebraic varieties. In fact, the
algebraic geometry suggests an alternative (non-probabilistic) approach to
the intersection theory of random sets.

Concentration of measure. The localization of density to a single value z €

[0,1] is a general phenomenon in statistics which was geometrized by Paul
Levy and then decply developed by V. Milman (see [Mil-Sch], [Pis]). In the
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case of the intersections we have, under quite general circumstances (i.e. for
measures invariant under some transitive group G acting on C), the averaged
formula for dens(A N B) as

Avycard AN B = (card A)(card B)/ card C,

(where B is fixed and A is moved by the group G). But it is not always
true that the density function dens(A N B) stays all of the time close to the
average value; yet the Levy-Milman philosophy suggests it must be so in
mauny interesting cases.

Symmetries. These seem indispensable for a good intersection theory, though
they may be more general than just group-theoretical. This is seen in the
case of random algebraic varieties (either defined over a finite ground field
Fo, where deg F/Fy — oo, or defined over Z with F' = Z, for p —
00). Another combinatorially interesting example is where C is of the form
C =BxBx...x B for i = oo and where one allows symmetries equat-

ing “fibers” B x bo x ... x & C B with diagonals ({) = b,} C B x B) x
bo x ... x bg.
\_._-4

-2

9.B. Density of random presentations of groups. Consider groups given
by p > 2 generators and some relations of a fixed length £ (or, may be, of
length close to a given value £). The set of all words C; of length £ has
cardinality N = (2k— 1) and we want to study random subsets (of relations)
A C C, of a given density d as £ — oo.

Phase transition proposstion. Ifd < % then the (random) group I' defined
by A is a hyperbolic group of dimension two end if d > % then T' is trivial.

Proof. Let us first decide when two (cyclic) words in A have a commmon
subword of length ¢ < ¢. The set Cy of the words of length € clearly has

densCp = (£ /¢)dens C..

The restriction of a word ¢ € A to a subword of length £ defines a map
A — Cp which (for a random A of density d) has no double point for

2d < densCp = /L.

Since the number of cyclic permutation of a word equals € which is incompa-
rably smaller than the cardinality of C,, we conclude that,

If2d < £ /¢, then no two words, or cyclic permutations of these, in a random

subse! A C C¢ of density < d have a common subword of length € and

so T satisfies the £'[¢-cancellation condition. In particular, if d < 3 (i.e.
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card A s significantly smaller than (2k — 1)'/") then T is a hyperbolic small
cancellation group and if d > J; then (the random presentation of) T' is not
1/6.

Now let us compute the density of the set of Dehn diagrams of a given combi-
natorial type. We assume our diagram is non-degenerate, i.e. is a topological
disk built out of m 2-cells corresponding to words in A which meet in pairs
over certain subwords (edges) of lengths &, ...4 as in Fig. 25

()

Fig. 25

The density of the set of m-tuples of words in A has density md and cvery
cominon edge of length £; “imposes (¢;/£)-conditions”, i.e. reduces the density
by ¢;/¢. Thus the density of the set of the diagrams equals

k
md - )" £/ = ind — m /2 + perimeter/¢,

where “perimeter” is the sum of the lengths of the free edges in the diagram.
Thus, a diagram has negative density (i.e. does not appear at all) if

perimeter/¢ < m (% - d) . (%)

Now, we assume d < } and observe that the reciprocal of (+) amounts to the
linear isoperimetric inequality

length (boundary) < (-;— - d) Area (Diagram),

where we normalize the geometry hy making £ = 1 and the area of each
2-cell also eqnal one. This isoperimetric inequality applics, a priori, to the
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diagrams consisting of at most m = m(£) cells where m — 0o as £ — oo, and
by elementary hyperbolic geometry (sec [Gro), ) this implies, in turn, a linear
isoperimetric inequality for all Dehn diagrams. Thus [ is indeed hyperbolic
of dimension 2. What remains to show is the triviality of I' when the density
d of the generating set is <  but this we leave as an easy exercise to the

reader.

Remarks and open questions. (a) The sketch of the argument we gave needs
filling in the details (e.g. concerning irreducibility of cyclic permutations of
words) but this is not difficult.

(b) What happens at d = }? For example, is there sorne asymptotic expansion
at d = ] which reveals the presence of non-trivial groups which are not world
hyperbolic of dimension two?

(c) The number d = } appears in a closely related context in [Kes], [Gri} and
(Cham]. Namely, let N C F,, be an infinite normal subgroup and N, = NNCy,
where (7} is the £-ball in the free group F,. Then there exists a limit

d(N) =ll_i’r:1° dens Ny,

which satisfies 2 < d(N) < 1. One knows (sec [Kes]) that F,/N is amenable
if and only if d(N¥) = 1. On the other hand, groups with sufficiently small
cancellation have d(N) — } as the lengths of the relations in question go to
oo (see [Cham]). It seems to imply tbat normal subgroups N = N(A) C F,
gencrated by random subsets A C Cr with dens A < d < ] have d(N) — 1
for £ — oo.

(d) Let A C F, be a random infinite suhset such that the intersections ANC,
have densities < d < % for £ > | (where C; denotes the £-sphere in F,). Does
it follow that the groups F,/N(A N Cy) are hyperbolic for all £ and the group
F,/N(A) is infinite?

‘The difficulty in proving the hyperbholicity of F,/N (AN C,) appears as the
words in ANC; may have highly diverse lengths in the interval [1,¢] and then
the present techniques only allow very sparse subsets A (see [Grol,4, [Cham]).

(e) One can imagine the following procedure to produce subsets A C Cy of
given density d, which becomes especially transparent if we work in a lattice I’y
acting on the hyperbolic space Hg rather than in the free group F,. Namely,
take a subset A, C S™7' = 8 H, tben take a cone A over Ay, from some
point 7, in HE, intersect A with the sphere of radius £ in H2 around zo,
take the p-neighbourhood of this intersection for a fixed large number p and
finally intersect this neighbourhood with Iy embedded to Hg by the orbit map
v — y(zo) € Hg. The resulting subset, say A, C [y, usually has dens A, =
(dimyau A¢)/n — 1. However, such subsets A, are far from being random for
those Ao C S™ ! which normally appear in geometry. For example, if A, is
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a closed set, then the subsets A, become extremely special and our counting
argument does not apply. (Notice that the “random discussion” e.g. “phase
transition” extends from F, to an arbitrary non-elementary hyperbolic group
T'o.) Yet one may think that for certain (random) subsets Ao, C S$™? the
(generic) structure of the groups 'o/N(A,) can be understood.

(f) There are other probability settings which may lead to interesting groups.

For example, let us take a projective space P (or a more general algebraic

variety over a field F) for the set of generators and let the set of relations be

the set of F-points in P = P x ... x P of a (random) algebraic subvariety
N e

¢
A in P, This situation is the nearest to what we have studied earlier if F is

a finite field and so, besides ¢, the cardinality of F and the degree of F over
the ground field appear as asymptotic parameters. But the groups defined in
this fashion look quite pretty also for infinite (e.g. algebraically closed) fields
F (and also for rings such as Z).

(g) The probabilistic approach to the notion of a “generic” group is rather
artificial as there is no apparent natural measure (or class of measures) in
the space of (infinite presentations of) groups. But a natural topology is
present. (Compare compactness theorems in model theory, see [Barw], Part
I, §§ 2.4 and 4.2.) Generic (properties of) groups in this topology has been
recently investigated by Champetier (see [Cham}). It would be interesting
to understand the continuity (and measurability) property of our asymptotic
invariants such as conf dimd.I' and the {,-Betti numbers. For example, does
the conformal dimension of a random group depend only on density or is
conf dim able to distinguish groups with a given density? This is related to the
ergodicity problem of the isomorphism relation on the space of presentations.
In this regard E. Ghys asks if there is any measure (or measure class) on the
space of presentations of groups invariant under the isomorphism relation.

(h) What should be a hyperbolic (e.g. sinall cancellation) theory for finitely
generated (and finitely presented) algebras (associative or Lie, for exam-
ple) over a fixed field? What about random algebras? How are the (non)-
separation properties (in the Ilausdorfl sense) of the space of presentations
modulo the isomorphism relation connected to the (logical) classification the-
ory? (See [She].)

(i) We conclude with more conerete “randomn” questions. Does a generic
group with p generators and ¢ > p relations admit a non-trivial linear rep-
resentation? (It is clear, such representations are numerous for p > ¢ but uo
general theory is available yet. Also notice that the most powerful geometric
tool for the representation theory is provided by a higher rank generalization
of Thurston’s narrow simplices.) Docs a generic finitely presented group con-
tain a non-free infinite subgroup of infinite index? Our discussion on groups

1

presented by A C Cp with dens A = d < 1 indicate that these contain no
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surface groups of genus < ¢ for ¢ — oo with £ = 00, but we do not know
if some surface group of high genus is always present in a random (or every
non-virtually free) hyperbolic group. Do generic groups with ¢ > p satisfy
T-property? Do they, on the contrary, have £&; H' # 0, in the case of small
density of the set of relations? Is there a relation between this density and
the value of the minimal p for which £, H' #£ 0?7

Notice that our “generic” and/or “random” questions have a good chance
to have yes-no answers since the isomorphism relation on the space of pre-
sentations is quite tangled. Namely, if the genericity refers to the topology
of this space, one knows many orbits of these relations are not closed and
the quoticnt space is highly non-Ilausdorff (i.e. it strongly violates separation
axioms), which makes it hard for a non-constant continuous function on the
space of presentations to be invariant under the isomorphism relation on this
space. (Compare [Cham]. Apparently no non-trivial function of this kind is
known as was pointed out to me by E. Ghys.) Similarly, in the “random”
framework, one expects certain ergodicity of the isomorphism relation which
would force measurable invariants of groups to be constant (in the agreement
with the concentration of the measure phenomenon of Levy-Milman which is
ot always directly linked to ergodicity). But even if we encounter a non (al-
most everywhere) constant invariant (function on the space of presentation)
we may extract from it numerical information (e.g. the average over the space
of presentations) which may carry non-ambiguous statistical data whilst the
values of this invariant at individual groups may be well beyond reach.

Let us indicatc a possible use of the ideas of randomness and density in the
(non)embedding problem for sinall cancellation groups. We start by indi-
cating some non-asymptotic vbstructions to such embedding which are not
directly related to “random density”.

Systolic genus. For every group I' we define sysgen I' as the minimal genus
of the surface group ¥, which admits an essential liomomorphism ¢ : ¥; —
I', which means ¢ does not factor by ¥, — F; — T where F; is a free
group. This means, in the topological language, that there exists an essential
map of a surfacc S of genus g into the classifying spacc K (T, 1), say f :
S » K(T,1) which does not contract to anything l-dimensional in K(I',1)
(compare [Gro)yo).

Eznmples. The surface group Y, itself has sysgen £, = g; every free group
has sysgen = oc.

Monotonicity. If ') can be embedded into Ty then sysgen 'y > sysgen I's.
The proof is straightforward.

Remark. One may modify our definition of sysgen by using “injective” instead
of “essential”, or yet another condition such as “non-homologous to zero in
dimension two”. But the notion of essential appears to me most logical.
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Upper and lower bounds on sysgen. In order to bound sysgen I by g it suffices
to exhibit a surface subgroup ¥, C T or to realize some non-trivial homology
class in H,(T') = H,(K(T,1)) by a surface of genus g.
Now we indicate some lower bounds. The simplest case here is that of T’ =
x1(V) where V is a complete manifold of strictly negative curvature, say
K(V) < —1. Then,

sysgen I > 1 + (sys,V)/2x, (%)
where sys, V denotes the infimum of areas of essential surfaces in V. (To prove
(+), make a given surface in V almost minimal and then use Gauss-Bonnet.)
Notice that sys; can be bounded from below by the injectivity radius R, of
V’

sys, > area D_,(R,) (»+)

where D_;(R,) denotes the hyperbolic (K = —~1) disk of radius R, but I do
not know what is the sharp version of (++).

One may also use the redius of freedom R; of V instead of R, = inj Rad
that is the supremum of the radii of the balls in ¥V which contract the one-
dimensional subsets in V. It is clear that R; > R, and that

8ys, 2 CR?y

for some universal constant ¢ > 0.

Now we are sufficiently geotnetrically prepared for the following

Algebraic lower bound. Every small cancellation -group T has sysgen T >

k/6.

The proof is imnediate with Dehn diagrans (corresponding to minimal sur-
faces) of genus g in T".

Remark. We more or less ignored torsion in the above discussion. Other
wise, we should have used groups ¥ with torsion cocompactly acting on the
hyperbolic plane.

Now we have an obstruction for embeddings of a group T into }-groups I'
for large k. Namely if Hz(To) = 0, then s, = sysgen I'y < 0o and I'g does not
embed into I for k > 6sy. This applies to most small cancellation groups I'g
as they have more relations than generators and consequently () £ 0.

Remarks and questions. (1) It would be interesting to find a way to use more
fully the genns function on };(I'p), not only the minimum of it.

(2) One may try to relicve oneself of the dependence of fI; with the following
algebraic version of the radius of frcedom. First, for a finitely presented group
I1, take a 2-dimensional simplicial polyhedron P with x,(P) = I which has
the minimal possible number of simplices and let height I1 be this number.
(This is a rather naive kind of height.) Then define syshi I’ as the minimal
height of IT for which there exists an essential hornomorphism Il — T.
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Our geometric lower bounds for sysgen readily extend to syshi but I am not
certain what to do with the algebraic bound. The essential question reads,

Let IT be a non-free group. Then it probably does not embed into any }-group
T for sufficiently large k = k(IT).

Ezercise. Let I be a word hyperbolicgroupand 'y, DT, D ..., D ... bea
sequence of subgroups, such that _E‘lol [; = {id}. Then

syshiT; = 00 for { = oo,

(This generalizes to T; with free N T';.)
1
Now we return to random groups and state our question.

Conjecture. A random }-group |s not m and it probably does not embed
(quasi-isometrically?) mto any piy-group. Moreover a random group (given
by a set of relations A C C¢) of density 2(“‘) + ¢, € > 0, admnits no m
presentation (for large £ - » 0o) and may not even appear as a subgroup in a
Hﬁ-group. (Here we assume as earlicr k£ > 6.)

This agrees with the intuitive idea that there are significantly more isomor-
phism classes of groups (presented by sets A C C) with density d < 1 than
of those with density d' < d. Another “generic” idea behind the conjecture
is that cvery subgroup I in a random group of density d < 1/2 has density
d’ < d 4+ ¢, where ¢ — 0 when the implied number ¢ (i.e. the length of the
relations) goes to infinity. (One may approach the above conjecture by non-
asymptotic means based on an evaluation of sysgen of a random group of a
given density. This is interesting in its own sight but will hardly give us the
required sharp non-embedding theorem.)

Here are two related problems:

(1) Evaluate the number of isomorphism classes of groups on p generators
presented by subsets A C C of density < d for a given d < % Notice that
the number of such presentations is about 2% for N = (2p — 1) and the
(isomorphism) equivalence relation can hardly rednce this number by much.

(2) Let us introduce a density of an (individual) finitcly generated group T.
This is defined as the minimnal number d such that T = F,/N for some p and
a normal subgroup N C F,, where the following is satisfied. There exists an
integer £ > 1, such that the subset N, of the words of length < ¢ normally
generate N and such that for all k = 1,2,..., € the density of the intersection
NN Cy in C), (where Cy is the set of all irreducible words of length k) does
not exceed d. It is not hard to show that I' presented by a random subset
A C Cy of density d < § has densT < d + ¢ where € — 0 with probability
one for £ — oco. The problem we raise reads,

Does densT' converge to d with probability one for £ — oo ?
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The positive answer here amounts to saying that a random presentation is
optimal in the sense that it minimizes the density.

A possible approach to the above conjectures may be based on the exis-
tence of a certain a priori bound on Lipschitz constants of isomorphisms (and
monomorphisms) between hyperbolic groups (discovered by Thurston with his
narrow simplices and then generalized by other people with the final result
due to I. Rips). This becomes especially clear if we start with a sufficiently
rigid hyperbolic group I'p instead of F, and look at what happens as we add a
set A of random relations of length £. A good example of a rigid I'y would be
a cocompact lattice acting on a hyperbolic space of dimension > 3, where the
outer automorphism group of Ty is known to be finite by the Mostow rigidity
theorem. Now, it seems plausible that for two random subsets A C C¢(T'g) and
A’ C Cp(Tg) with (low) densities < dy = do(T") > 0 the isomorphism relation
between the quotient groups I' = I'g/N(A) and IV = To/N(A’) is equivalent
to the existence of an automorphism of T’y mapping N(A) onto N(A’), which
makes N(A) = N(A") modulo a finite group (i.e. Out Ty). (The situation
here is rather opposite to the crgodicity of the isomorphism relation on the
set of presentations we have emphasized earlier.) Then it becoines evident
that dens 1" is essentially equal to dens A and that with probability — 1, for
£ — oo, pairs of presentations (of low density) give mutually non-isomorphic
groups, so that the number of mutually non-isomorphic groups I' = I'g/N(A)
is, ronghly, double exponential in £,

Let us conclude by a Mostow type rigidity problem where tlie positive solution
would settle the above conjecture. Let T and Iy be the fundamental groups
of complete locally symmetric spaces V, and Vj with negative curvatures and
finite volumes. Let W, and Wj be compact totally geodesic submanifolds
in V, and V] respectively and let T and I” be factor groups of T'g and T,
by the normal subgroups normally generated by the fundamental groups of
the connected components of Wo C Vp in [y = (V) and of Wy C V} in
[, = = (V). We ask when an isomorphism between I' and I" is induced by
an isometry Vo & Vj which sends W, «+» W; and we conjecture this is so if
dim V5 > 3 and the submanifolds Wy C V, and/for Wy C V] are sufficiently
rare, i.c. satisfy some strong small cancellation condition, (as happens, for
example, for random systems of closed geodesics of low density).

Notice that there is a parallel (and easier) rigidity problem in the case of
the codimension two submanifolds Wy and W where instead of the factor
groups To/N(x1(W;)) and [y/N(x(W;)) we take the fundamental groups of
the complements V5 — Wy and Vj — W] for T and I''. More generally, we
may take the Galois groups of the universal ramified coverings of ¥, and Vj
with prescribed orders of ramifications at W, and W; (where order = oc
corresponds to x,(Vo — Wh)).
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There are three avenues to the study of these rigidity problems parallel to the
approaches which proved successful in the locally symmetric case.

1. Simplicial road. Here one wants to understand what happens to the
simplicial norm of the fundamental class of [, = m(V5) when one passes
to T = To/N(x,(Wp)) (or I' = x(Vo — Wp)). Observe that the case of
a 3-manifold V, minus several closed geodesics fits into Thurston's theory
and our rigidity problem for V5 — W, (and for ramified covers) should follow
from Thurston’s rigidity theorem. Also notice that for many applications a
compactness result would serve as well as rigidity which makes Thurston’s
compactness techniques (using narrow simplices) look very promising.

2. Conformal road. One must understand the geometry of the conformal
boundary 8.ontl. The first question here is the conformal dimension of JggurT.

3. Harmonic road. The group T’ (and I) is represented hy the (singular)
space V obtained from V; by attaching cones to the connected components
of Wy. In some cases this space has negative curvature and one may look at
harmonic maps of a locally syinmetric space (e.g. V3) into V. This may work
if the symmetric model (for V;) is H&", H§®* or HS.

In order to solve the rigidity problem it would suffice to establish the following

Lifting property. Every homomorphism ¢ of a lattice 'y C IsoV; into
the quoticnt group 1Y = Ty/N(x(W;)) factors through a homomorphism
Ty — I'y, (where one may impose on ¢ a suitable condition, e.g. require ¢ to
be an isomorphism H,(Ty) ~ H,(IY) in the case the manifold V; is compact
of dimension n).

This suggests the following relative version of the notions of the systolic genus
and systolic height for groups like I' (and I'') where T’y (and I'g) play the role
of the free group F, prescnting a small cancellation group ' = (m,... 7, |
Tl enyTq)

Definitions. The systolic genus of T relative to [y, denoted sysgen (I'\I'o),
is the minimal genus g of a surface group X, which admits a bomnoinorphism
¥, — T which does not lift to (i.e. does not factor through) I'o. Similarly,
sysheight (I'/To) is the minimal height of a group IT adinitting a non-liftable
homomorphism to T.

Ezample. Let T be obtained fromn I'y by shrinking to a point a single random
geodesic of length £ in V,. Such a geodesic has “self-common™ pieces of length
2 log £ and so I' should be regarded as = £/log £-small cancellation group.
Then one can prove that sysgen (['/Tp) 2 £/ logZ and one conjectures that

sysheight (I'/Tp) = o0 for £ — oo.

Now, suppose we kill geodesics ¥ and v in V, and V{ respectively and then
we want to understand the geometry of an isomorphism ' = To/N[y] < ' =
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I/ N[v]. The above conjecture implies for fixed Iy and large ¢ = length
that the resulting homomorphisms of [y (in place of II) to I lifts to I'y. Here
one may try to use additional assumptions on (and issuing properties of)
To, such as non-existence of essential actions on trees. In fact, if one could
make use of certain uniform (i.e. independent of #) hyperbolicity of I, one
would then obtain a bound on the dilations of homomorphisms ', — [ by
the Thurston-Morgan-Shalen compactness argument. But a hiornomorphisin
of a bounded dilation (i.e. having the images of the fixed generators in Iy
lying in a fixed, independent of &, ball B(R) C T for the word metric for
a fixed system of generators in I’ = [(#) = T'y/N) can be lifted to [y for
large £, since the quotient homomorphism I'y — IV is injective on every ball
By(R) C T as ¢ becomes large enough compared to R (under our genericity
assumption on v').
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